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Abstract

I describe the theory and construction of a new bichromatic optical superlattice to

study the pairing and thermodynamics of mixtures of spin 1
2
-up and spin 1

2
-down

atoms in periodic double well potentials. Our bichromatic lattice contains λ1 “ 1064

nm and λ2 “ 532 nm standing wave lattices. With tunable depth and relative phase

between the two lattices, periodic double well potentials of arbitrary local symmetry

can be constructed.

I present the first systematic experimental study of a two-component ultracold

6Li atomic Fermi gas in a single color 1064 nm lattice, which is continuously tuned

from 2D to quasi-2D. A system is 2D if it is free to move in two dimensions while

tightly confined in the third direction, such that only the ground state is occupied.

Conversely, it is quasi-2D if higher states in the tightly confined direction are also

occupied. I describe both radio frequency spectra and radial cloud profiles measured

under identical conditions for each regime. Our results confirm predictions that the

mean-field theory is not valid throughout the 2D to quasi-2D dimensional crossover.

We also clarify that there is no transition between 2D and quasi-2D systems.

I also present the first study of pairing in a periodic double well potential. A

Green’s function method is developed to compute the pairing energies in the lattice.

Although further understanding of the results are needed, I provide some prelimi-

nary rf spectra measurements supporting the theoretical approach and implying the

existence of two types of pairing.
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1

Introduction

θ

(a) (b)

Figure 1.1: Bichromatic superlattice constructed by two color co-propagating
beams of λ1 “ 1064 nm and λ2 “ 532 nm. (a) Two beams co-propagate and in-
tersect at θ “ 91˝ and form a bichromatic lattice. The lattice is superposed on a
CO2 laser dipole trap along its axial direction z. (b) Illustration of tunable relative
phase between the two color beams.

My dissertation presents the theory and construction of a new bichromatic opti-

cal lattice to study the pairing and thermodynamics of strongly interacting ultracold

Fermi gases in periodic double well potentials. A bichromatic superlattice is con-

structed by co-propagating two color beams of λ1 “ 1064 nm and λ2 “ 532 nm,

intersecting at θ “ 91˝ and superposed along the axial direction of a CO2 laser

dipole trap, as shown in Fig. 1.1. We load atoms into this composite trap to gen-
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erate an ensemble of bilayer clouds. By changing the relative intensity and phase

between the two color lattices, we construct periodic double well potentials of flexible

local symmetry, as illustrated in Fig. 1.2. Such a composite trap system enables the

study of dimensional crossover, control of dispersion and extended fermionic pairing.

(a) (b) (c)

Figure 1.2: An illustration of modifying the double well geometry by changing the
relative phase φ between the two color lattices. Plotted for V pxq “ ´V1 cos2pkxq `
V2 cos2p2kx ` φq with V1 “ V2 “ 1 and relative phase (a) φ = 0, (b) φ = 3π{16,
and (c) φ = π{4. As a result, the tunneling and pairing are expected to be altered
significantly.

I first study the 2D to quasi-2D crossover using just a single color infrared optical

lattice, for testing the validity of the 2D Bardeen-Cooper-Schrieffer (BCS) mean field

theory. A system is 2D if it is free to move in two dimensions x and y , while tightly

confined in the third direction z. Assuming a harmonic confinement, a gas is 2D

if only the z harmonic oscillator ground state, whose energy is 1
2
hνz, is occupied.

Conversely, the system is quasi-2D if higher states in the tightly confined direction

are also occupied.

Recent experiments have made a number of intriguing and somewhat puzzling

observations regarding the applicability of mean field theory to describe 2D many-

body systems. An undamped, monopole breathing mode is found to oscillate at

2



twice the trap frequency for a broad range of temperatures and couplings across

the 2D crossover [1]. This apparent scale-invariant behavior, in a theory with an

explicit scale of pairing energy Eb, is very surprising [2], but emerges naturally from

zero temperature mean field theory. Radio frequency spectra obtained in the 2D

regime [3, 4], reveal that the absorption threshold is close to Eb, a 2D-BCS mean

field prediction [5] that one would not have expected to be quantitatively valid in

2D. Although one might expect similar 2D-behavior for a quasi-2D gas, the measured

spectra are in strong disagreement with BCS mean field theory [6], as are the mea-

sured thermodynamic properties [7, 8, 9, 10, 11, 12], which require a beyond mean

field treatment. This raises an important open question: Can mean field theory

describe the thermodynamics of a 2D gas when the spectrum is correctly predicted?

We present in this thesis work the first systematic experimental study.

(c) (d)

(a)

(b)

hνz

μꓕ0

Figure 1.3: Defining dimensionality of the gas. A deep optical lattice is generated
along the z-direction by interfering two λ “ 1064 nm beams. (a) represents a weaker
radial confinement from the CO2 laser trap, thus a lower Fermi energy, than in
(b). Part (c) and (d) illustrate the radial chemical potential µK of each axial state.
When the chemical potential is small compared to hνz, the gas is 2D, as in (a) and
(c). The gas is quasi-2D when Fermi energy is comparable to hνz, as in (b) and (d),
where higher axial states are occupied.

For our system of gas loaded in a one dimensional standing wave lattice, when

the radial Fermi energy EF is small compared to hνz, the energy difference between

3



two states in the tight confinement direction, the gas is 2D as shown in Fig. 1.3(a)

and (c). In contrast the gas is quasi-2D when EF and hνz are comparable such that

higher axial states are occupied, as shown in Fig. 1.3(b) and (d). The dimensionality

of the gas within each single layer is tuned from 2D to quasi-2D by continuously

increasing the transverse Fermi energy, by increasing the radial confinement of the

CO2 laser potential.

The measurements employ two primary techniques. Radio-frequency (rf) spec-

troscopy is used to measure the pair-binding energy and phase contrast imaging is

used for extracting the cloud radii, to study the thermodynamics. I present both rf

spectra and radial cloud profile measurements taken under identical conditions for

each regime, to test the validity of the 2D BCS mean-field theory systematically for

the first time. For the quasi-2D gas, we find that the spectra disagree with 2D-BCS

theory. For the 2D gas, we find that the spectra can be fit by 2D-BCS mean field

theory, consistent with previous work[3, 13]. In contrast to the spectra, we find that

the radii for 2D clouds are much smaller than those predicted by 2D-BCS mean field

theory, which yields ideal gas density profiles[14]. Our results show that there is no

transition between 2D and quasi-2D systems and that beyond mean field descriptions

are required in both regimes.

Next I use rf spectroscopy to study extended fermionic pairing interactions in

periodic double well potentials as shown in Fig. 1.4, where an ensemble of bilayer

Fermi gases are formed. The shape of each double well is changed by varying the

depth and relative phase between the two color lattices, as illustrated in Fig. 1.1(b)

and Fig. 1.2. The change in double well local symmetry modifies the interlayer

coupling and tunneling, which one would expect to alter the binding of extended pairs

significantly. We develop a Green’s function approach for computing the extended

pair energies in a double well bilayer gas, and present the first preliminary results for

the rf spectra. We find reasonable agreement between the theory and measurement,

4



indicating that two types of dimer pairing is possible.

z

Figure 1.4: Illustration of the extended pairing in a double well bilayer gas.

One can control the dispersion of strongly correlated superfluids in the bichro-

matic lattice. By choosing certain depth and relative phase, a Dirac point is gener-

ated between the second and third bands, and the gas can be made linearly disper-

sive [15]. Our future goal is to use the CO2 laser trap to tune the Fermi energy to

the band crossing region of the one dimensional Dirac point, creating an analog of a

trapped, relativistic Fermi gas.

1.1 Fermi gas with tunable interactions: Feshbach resonance

We trap and cool a dilute gas of fermionic 6Li atoms to quantum degeneracy, where

the interparticle spacing is small compared to the de Broglie wavelength λdB “

h{p
?

2πmkBT q. In this regime, the wavepackets of adjacent particles starts to over-

lap such that a classical description is no longer valid. The gas now has to be

described by a many-body wavefunction governed by Fermi statistics, which requires

the wavefunction to be antisymmetrized under exchange of particles. In the dilute

limit nr3
0 ăă 1 where r0 is the range of the interatomic potential, the average in-

terparticle spacing is much greater than the range of the interatomic potential. The

interaction between particles can be taken as short range. In this limit, three-body

collisions are rare and only two-body s-wave scattering is considered to be dominant.

From a heuristic standpoint, consider a collision in which two atoms have a rela-

5



tive linear momentum p. The maximum relative orbital angular momentum that is

relevant to the scattering process is approximately given by L » r0p » r0h{λdB ăă 1.

Since the angular momentum is quantized L “ l~, and L ăă 1 only l “ 0, i.e. s-wave

scattering, is allowed. One can model the short range interaction as a pseudopoten-

tial [16]

V prqΨprq “
4π~2a

m
δprq

B

Br
rrΨprqs , (1.1)

where r “ r1 ´ r2 specifies the relative position of the two atoms and a is the scat-

tering length. In our system, the scattering strength can be tuned from zero to very

strongly attractive a ă 0 or repulsive a ą 0 where a " λdB is strongly interacting,

using an external bias magnetic field near a collisional Feshbach resonance.

Since the Pauli exclusion principle prevents identical fermions interacting with

each other via s-wave scattering, in order for interaction to exist, we use a two-

component Fermi gas with atoms in the lowest two hyperfine states |1y and |2y of

6Li. All alkali atoms have only one valence electron (s “ 1{2). Therefore, states |1y

and |2y interact via either spin singlet molecular potential or spin triplet molecular

potential for s-wave scattering. For a spin singlet state whose spin wavefunction is

antisymmetric, to antisymmetrize the overall wavefunction, the spatial wavefunction

is symmetric. The symmetric spatial wavefunction of the spin-singlet state reduces

the repulsive interaction between the nuclei, resulting in a deeper molecular potential

than the triplet.

In Fig. 1.5, atomic potentials for both singlet and triplet states are shown near a

Feshbach resonance. Bound molecular states exist in the deep singlet potential, also

referred to as the energetically closed channel. The two atom state in the shallow

triplet potential, called the open channel, has energy higher than the energy of the

singlet bound state. An external magnetic field is applied to Zeeman shift the energy

level of the triplet state towards that of the singlet bound state.

6



Figure 1.5: Relative positions of atomic potential for the highest lying singlet
bound molecular vibrational state (solid horizontal blue line) and triplet two atom
states(red dashed line) around a Feshbach resonance. The triplet state can be tuned
by a magnetic field. (a) B ă B0 corresponds to the BEC side of Feshbach resonance
where molecular dimers are stable; (b) B “ B0 corresponds to resonance; (c) B ą B0

corresponds to BCS side, where molecular dimers are not stable, and decay into the
triplet continuum.
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When the open and closed channel are tuned to be degenerate at B “ B0, as

shown in Fig. 1.5pbq, the hyperfine coupling between the two channels give rise to a

Feshbach resonance, where the scattering length diverges and leads to strong inter-

actions. When the magnetic field is at B ă B0, the energy of the triplet two atom

state lies above the singlet bound state, as shown in Fig. 1.5paq. The scattering

length is positive and interactions are repulsive. The triplet two atoms form stable

bosonic dimers due to three-body recombination and form a molecular BEC at low

temperatures. This regime is called the BEC side of the resonance. Conversely,

when the magnetic field is tuned to B ą B0 as shown in Fig. 1.5pcq, the scattering

length is negative and the interactions are attractive. The singlet molecular state

is unstable and decays into the triplet continuum due to the hyperfine coupling. In

a many-body system above B0 two atom states form Cooper pairs due to the weak

attractive interaction in the presence of other fermions, and form a Fermi superfluid

at low temperatures. This corresponds to the right side of the resonance in Fig. 1.6,

or the BCS side of the resonance.

The Feshbach resonance is parametrized as a function of the magnetic field B

as [17],

aspBq “ ab

ˆ

1`
∆

B ´B0

˙

p1` αpB ´B0qq, (1.2)

where the background scattering length ab “ ´1450 a0, a0 is the Bohr radius. The

resonance occurs at B0 “ 832.2 G [18, 19] and has a width of ∆ “ 300 G, and

α “ 0.0004 G´1 is the first-order correction. This is sometimes referred to as the

broad Feshbach resonance1. The broad Feshbach resonance provides a controllable

way to explore the strongly interacting nature of the system. Figure 1.6 illustrates

the 6Li |1y-|2y s-wave scattering length around the broad Feshbach resonance.

1 There is a narrow Feshbach resonance located at 543 G with width less than 1 G.
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Figure 1.6: S-wave scattering length in units of Bohr radius versus magnetic field
for 6Li |1y-|2y scattering channels around broad Feshbach resonance at B0 “ 832.2
G. B ă B0 is the BEC side, and B ą B0 is the BCS side.

1.2 Validity of 2D BCS Mean-Field Theory

A quantum system is 2D if the chemical potential and the thermal energy are smaller

than the energy difference between two consecutive states in the strongly confined

direction. For a deep one dimensional optical lattice in the z-direction, the energy

difference hνz can be obtained using a harmonic approximation, as shown in Fig. 1.3,

where ωz “ 2πνz is the harmonic oscillator frequency. Under this condition, the

motion of particles is restricted to the quantum mechanical ground state with a

length scale l0 “
b

~
mwz

, where m is the mass of the atom. This new length scale

l0, which does not exist for a 3D gas, now emerges and is competing with another

length scale, the three-dimensional s-wave scattering length a.

In 2D systems the dimer binding energy Eb sets the natural length scale for

two-body scattering interactions [20], but a many-body treatment is required when

the Fermi energy EF is large compared to Eb, since the interatomic spacing is then

smaller than the size of the dimer [5]. 2D-BCS mean field theory (MFT) [5] provides
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an elegant treatment of this problem, but MFT is expected to fail in 2D systems,

as noted by Randeria and Taylor [21] and shown in many recent predictions [22, 23,

24, 25, 26, 27, 28]. For quasi-2D systems, the effect of the third dimension on the

equation of state and pairing energies is not yet understood [29, 30].

Prior to this thesis work there has been no experimental study of the thermody-

namic properties in the 2D regime. I present in Ch 4 the first systematic experimen-

tal study of a two-component ultracold 6Li atomic Fermi gas in a single color 1064

nm lattice, continuously tuned from 2D to quasi-2D. Both the rf spectra and cloud

radii are measured under the same condition, to demonstrate the effect of the third

dimension systematically for the first time.

1.3 Pairing in a Bilayer Fermi Gas

In addition to two-dimensional systems with single layers, bilayer or multilayer sys-

tems attracted enormous attention in condensed matter physics. Extra degrees of

freedom coming from coupling between layers, i.e. the long-range Coulomb interac-

tion, are expected to lead to intriguing physics such as an interlayer exciton conden-

sation in bilayer semiconductors [31, 32, 33, 34, 35], fractional quantum Hall effect

in bilayer quantum well structures [36, 37, 38, 39, 40, 41], and zero-field magnetic

phases found in bilayer graphene [42, 43, 44].

In ultracold atoms, an analogous multilayer geometry can be created by confining

atoms with a deep bichromatic optical lattice in one direction. Since the long-range

Coulomb interaction is absent in neutral atoms, layers separated by distances larger

than the range of the collision potential are simply decoupled without interlayer

tunneling. With our bichromatic superlattice setup, we are able to construct an

ensemble of bilayer Fermi gases. As shown in Fig. 1.3, by controlling the relative

phase and amplitude of the two color lattices, tunneling within each bilayer can be

tuned, and we are able to study the confinement-induced pairing of these “exciton-
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like” molecules which span over adjacent layers, as illustrated in Fig 1.4.

1.4 Dissertation organization

I describe in Ch 2 the optical lattice theory for a bichromatic lattice. Experimental

methods including lattice alignment and loading, lattice depth and relative phase

calibration, band population measurement, and modulation induced interband tran-

sition are described in Ch 3. I address in Ch 4 how the dimensionality of the gas

is tuned smoothly from 2D to quasi-2D. Then I discuss the details of using radio-

frequency spectroscopy as a measure of the pair binding energy. I present the mea-

sured rf spectra and the cloud radii for both regimes. In chapter Ch 5, I describe a

Green’s function scheme for calculating the pair energies in an bichromatic lattice. I

present preliminary rf spectra measurements for the double well superlattice, which

supports the existence of two types of dimer pairing, suggesting that two types of

superfluid pairing is possible.
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2

Bichromatic Lattice Theory

Ultracold quantum gases are versatile and robust systems for probing fundamental

condensed-matter physics problems [45, 46, 47, 48, 49, 50, 51, 52], realizing quantum

computing[53] and understanding atomic and molecular physics [54]. The readers

are encouraged to refer to the review papers by Bloch et al [55, 56]. Storing fermions

in an optical lattice allows one to realize the Fermi Hubbard model with tunable

interactions with no impurities, which serves as a paradigm for strongly correlated

systems in condensed matter physics. The control and tunability of the interactions

in ultracold gases provides an ideal approach for studying basic problems in many-

body physics, which has not been accessible in condensed matter or nuclear physics.

A laser beam provides an oscillating electric field, which induces an oscillating

dipole moment in the atom, and interacts with this dipole moment to create a trap-

ping potential. The laser light is usually detuned far from the atomic resonance

frequency, in order to suppress spontaneous emission from resonant excitations to

avoid heating. An optical lattice is a spatially periodic potential formed by simply

overlapping two counter-propagating laser beams. The interference between the two

laser beams of wavelength λ forms an optical standing wave with period λ{2. In
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general one can interfere more beams in more directions to form a 1D, 2D or 3D

periodic potentials, as shown in Fig 2.1.

The 1D lattice is effectively an array of 2D disk-like trapping potentials. Two or-

thogonal optical standing waves create an array of 1D tubes, while three orthogonal

optical standing waves correspond to a 3D simple cubic crystal. The advantage of

using optical fields to generate periodic trapping potentials is that one has complete

control over geometry and depth of the potential, even in the time domain, allow-

ing the study of dynamics such as relaxation after a sudden quench, or transport

properties, or creation of artificial gauge fields, etc.

(a) (b) (c)

Figure 2.1: (a)A 1D optical lattice formed by a retro reflected beams. (b)A 2D
optical lattice which tightly confines the atomic motion in two directions. (c)A 3D
optical lattice formed by three orthogonal standing wave lattice beams.

Our bichromatic lattice is formed by intersecting two co-propagating beams, with

wavelengths λ1 “ 1064 nm and λ2 “ 532 nm, at an intersecting θ “ 91˝ angle, as

shown in Fig 2.2(a) and (b). With tunable relative phase between two lattices,

periodic double wells of various symmetries are formed. As shown in Fig 2.2(c), one

can have a symmetric double well, a slightly tilted double well, and a very asymmetric

geometry by choosing the phase. Changing the geometry significantly alters the

tunneling between the two adjacent wells. Thus, we expect the two particle pairing
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θ

(a) (b)

(c)

Figure 2.2: Bichromatic lattice with tunable relative phase constructed by inter-
secting two color co-propagating beams. (a) and (b) Two color co-propagating beams
of λ1 “ 1064 nm and λ2 “ 532 nm, intersecting at θ “ 910, and superposed on CO2

laser dipole trap along its axial direction z. (c) Double well of various symmetry are
generated by tuning relative phase between two lattices.

is modified. In Ch 5 we describe a Green’s function approach to study two particle

pairing in a bichromatic lattice in detail. The eigen solutions of the single particle

Schr:odinger equation are needed to construct the Green’s function. In this chapter,

we present details of how one calculates the eigenfunctions and eigen-energies for a

bichromatic superlattice.

2.1 Optical Dipole Traps

When a neutral atom is in a static electric field, the energy level of the atom shifts

because of interaction between the induced dipole moment of the atom and the

external field, known as the Stark effect. Similar interactions arise when an optical

field is present, where the oscillating electric field generates an induced dipole moment

d “ αE, where α is the polarizability of the atom. Interaction between the induced

dipole moment and the optical field, known as AC Stark effect, generates a potential

for the atoms,

V “ ´
1

2
d ¨ E . (2.1)
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The polarizability of the atoms in the ground state is given by

α “
1

~
ÿ

e

µ2
eg

„

1

ωeg ´ ω
`

1

ωeg ` ω



, (2.2)

where µeg is the electric dipole moment transition matrix element between ground

state |gy and excited state |ey, and weg is the associated transition frequency. We

can see from eq. 2.2 that the laser frequency should be red detuned for an attractive

potential, since then ωeg ´ ω ą 0 and α ą 0. For blue detuning, one obtains a

repulsive potential, where α ă 0.

The simplest way to trap atoms is with a focused red-detuned laser beam. For

a Gaussian beam which has 1{e field radius of w0, the optical dipole trap has the

following form :

V pr, zq “ ´
V0

1` pz{zRq2
e
´ 2r2

w2
0 , (2.3)

where zR “ πw2
0{λ is the Rayleigh length. The trap depth in MKS units is V0 “

αI
2ε0c

,

where ε0 is the permittivity of free space and c is the speed of light, and I is the peak

laser intensity. In most experiments, the atoms are cooled so that they stay at the

bottom of the trap. Then the Gaussian shaped optical potential can be approximated

as harmonic in all three directions.

2.2 Bichromatic Lattice Band Theory

Periodic potentials for atoms can be created by interfering two counter-propagating

laser beams with the same linear polarization and wavelength to produce a standing

wave along the beam propagation direction as described above. The envelope along

the beam propagation direction falls off with distance. As can be seen in eq. 2.3,

the intensity varies as 1{p1 ` pz{zRq
2q, with zR “ πw2

0{λ being the Rayleigh length,

and w0 being the beam waist (1{e field radius). However, for typical atomic cloud
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extensions and beam waists used for optical lattices, this spatial dependence can

be neglected. Ignoring the Gaussian envelope along the beam propagation direction

and the radial direction, the resulting one dimensional bichromatic optical potential

along z can be written as

V pzq “ V1 cos2
pkzq ` V2 cos2

ˆ

2kz `
φ

2

˙

, (2.4)

with a depth of V1 ” ´s1ER ă 0 for the red-detuned 1064 nm lattice and V2 ”

s2ER ą 0 for the blue-detuned 532 nm lattice. We define s1 and s2, the lattice depth

in units of the lattice recoil energy ER to be positive. By definition the recoil energy

is

ER “
~2k2

2m
, (2.5)

where k is the wave vector. Since our lattice is constructed by intersecting two beams

at θ “ 91˝ instead of retro reflection, thus k has to be replaced by k1, which is the

projected component along the direction of interference, i.e.

k1 “ k sin

ˆ

θ

2

˙

. (2.6)

The effective wavelength λ1 is

λ1 “
λ

sin
`

θ
2

˘ . (2.7)

The effective lattice spacing d “ λ1

2
is

d “
λ1

2
“

λ

2 sin
`

θ
2

˘ . (2.8)

In solid state physics, the common model used to describe the eigenstates of

electrons moving in the periodic potential created by the ions of a metal or crystal
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is based on the Bloch theorem [57, 58]. The same formalism can be applied to

ultracold atoms in an optical lattice potential, which has translational symmetry

V pzq “ V pz ` dq, where d is the lattice spacing.

Before we solve the Schr:odinger equation of atoms inside a lattice, it is worth

mentioning that we employ the box normalization to get a complete set of orthonor-

mal functions. For a free particle of momentum p inside a box of length L, the

wavefunction can be expressed as

Ψpxq “ Aei p x. (2.9)

Box normalization requires

ż x0`L

x0

dx1|Ψpx1q|2 “ 1, (2.10)

which determines the coefficient A “
b

1
L

. For a periodic boundary condition Ψpxq “

Ψpx` Lq, one obtains q “ 2πm{L, ´8 ď m ď 8 and m P integers. The states are

orthonormal shown as

ż x0`L

x0

dxΨ˚
ppxqΨp1pxq “

1

L

ż x0`L

x0

dxeipp
1´pqx

“ δpp1 (2.11)

The Schr:odinger equation that describes a single particle moving in a 1D periodic

lattice potential of size L “ Nd is

„

P 2

2m
` V pzq



ψ “ Eψ. (2.12)

We can write the single particle wavefunction as a sum over its Fourier components

ψ “
ÿ

p

Cpe
ipz. (2.13)
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Since the lattice potential is periodic, it can be written

V pzq “
ÿ

G

VG eiGz, (2.14)

G “ nG0, n “ 0,˘1,˘2... ,

where G0 “
2π
d

is the reciprocal lattice vector and Gd “ 2nπ. Rewriting eq. 2.12

and using eq. 2.13 and eq. 2.14,

ÿ

p

eipz
ˆ

~2p2

2m
´ E

˙

Cp `
ÿ

G

ÿ

p1

Cp1VGe
ipp1`Gqz

“ 0. (2.15)

Let p1 `G “ p in the second term, thus p1 “ p´G. Then

ÿ

p

eipz

«

ˆ

~2p2

2m
´ E

˙

Cp `
ÿ

G

Cp´GVG

ff

“ 0. (2.16)

Shifting pÑ p`G1 the above expression can be written as

ˆ

~2pp`G1q
2

2m
´ Eα

ppq

˙

Cα
p`G1

`
ÿ

G

Cα
p`G1´G

VG “ 0, (2.17)

where α, the band index, denotes the α-th eigenstate |α, py ”
ř

GC
α
p´G|p´Gy with

the corresponding eigenenergy Eα.

It is natural to work in dimensionless units by normalizing to a convenient mo-

mentum k “ π
d

and energy scales, the recoil energy ER “ ~2k2{2m. Rewriting

eq. 2.17,
«

´

prp` ĂG1q
2
´ ĂEαprpq

¯

Cα
p`G1

`
ÿ

G

Cα
p`G1´G

ĂVG

ff

“ 0, (2.18)

with rp “ p{k, ĂEα “ Eα{ER and ĂVG “ VG{ER. The above equation tells us Cα
p`G1

couples only to Cα
p`G1´G

. Therefore the eigenfunction, or Bloch state for a single
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particle of selected p “ q in a lattice of size L “ Nd, can be expressed in position

representation as

ψαq pzq “
ÿ

G

Cα
q`G

eipq`Gqz
?
Nd

, (2.19)

where N is the total number of lattice sites. Here q is the so called quasi-momentum

or lattice momentum.

From the above general expression for the Bloch states, since Gd “ 2nπ, where

n is an integer,

ψαq pz ` dq “ eiqdψαq pzq. (2.20)

The Bloch state at z ` d is the same as Bloch state at z with a phase shift of eiqd.

This is often expressed as ψαq pzq “ eik¨zuqpzq, where uqpz ` dq “ uqpzq is periodic.

The eigenstates are superposition of plane waves whose amplitudes are modulated

with the same periodicity as the lattice potential.

By shifting q to q ` G1 in eq. 2.19, and noting that the summation is over all

reciprocal lattice vectors G1, the sum remains the same, so that

ψαq`G1
pzq “ ψαq pzq. (2.21)

Here the Bloch state is periodic in quasi-momentum q with a periodicity of G0, the

reciprocal lattice vector. Inserting Ψq`Gpzq in the Schr:odinger equation eq. 2.12, we

have

Epq `Gq “ Epqq. (2.22)

The eigenenergy is also periodic in quasi-momentum q, and repeats after q ` G0.

Notice that the symmetry in quasi-momentum space allows one to restrict q inside

the first Brillouin zone, i.e. ´G0

2
“ ´π

d
ă q ă G0

2
“ π

d
, to avoid redundancy when

specifying all Bloch states. Which leads to q “ 2πm
Nd

with ´N
2
ă m ă N

2
´ 1, where

N is an even integer.
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Note that Bloch states are orthonormal as shown in the following. Define the

integral Iα,α
1

q,q1 over the lattice of length Nd as

Iα,α
1

q,q1 ”

ż Nd

0

dxΨα1

q1
˚
pxqΨα

q pxq

“ δα1α

N´1
ÿ

n“0

ż nd`d

nd

dxΨα
q pxqΨ

α
q1pxq

“ δα1α

N´1
ÿ

n“0

ż d

0

dx1 Ψα
q px

1
` ndqΨα

q1px
1
` ndq

“ δα1α

N´1
ÿ

n“0

eipq´q
1qnd

ÿ

G,G1

Cα
GpqqC

α
G1
˚
pq1q

ż d

0

dx1
eipq´q

1`G´G1qx1

Nd
, (2.23)

where δα,α1 comes in naturally by assuming these states are non-degenerate, i.e.

Eα ‰ Eα1 . After a change of variable, notice that the sum over n forms a geometric

series. Recall q “ 2πm
Nd

,m P integer, the geometric sum reduces to a Kronecker delta

δq1q as

N´1
ÿ

n“0

eindpq´q
1q
“

1´ eiNdpq´q
1q

1´ eidpq´q1q
“ Nδqq1 . (2.24)

Eq. 2.23 is then

Iα,α
1

q,q1 “ δα1αδqq1
ÿ

G,G1

Cα
GpqqC

α
G1
˚
pq1q

ż d

0

dx1

d
eipG´G

1qx1 . (2.25)

Since pG´G1qd “ 2πpn´ n1q, then the integral
şd

0
dx1

d
eipG´G

1qx1 “ δG,G1 .

Iα,α
1

q,q1 ”

ż Nd

0

dxΨα1

q1
˚
pxqΨα

q pxq “ δα1αδqq1
ÿ

G

|Cα
Gpqq|

2, (2.26)

where
ř

G |C
α
Gpqq|

2 “ 1 for normalized states.

We can rewrite the one dimensional bichromatic lattice potential given in eq. 2.4.
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Ignoring the constant offset V1`V2
2

and substituting 2k “ G0.1

V pzq “
V1

4

`

eiG0z ` e´iG0z
˘

`
V2

4

`

eip2G0z`φq ` e´ip2G0z`φq
˘

. (2.27)

Using the form of eq. 2.14, VG “
ř

G VGe
iG¨z, we have

VG “
V1

4
δG,G0 `

V1

4
δG,´G0 `

V2e
iφ

4
δG,2G0 `

V2e
´iφ

4
δG,´2G0 . (2.28)

The fundamental lattice potential part, i.e. cos2pkzq, allows only coupling between

|qy and |q ˘ G0y, whereas the secondary lattice potential, i.e. cos2p2kz ` φ
2
q, allows

coupling only between |qy and |q ˘ 2G0y.

We can rewrite eq. 2.18 using eq. 2.28 to obtain the dimensionless matrix

HrM,G1, G2, q̃, s1, s2, φs

“ pq̃ ` 2pG1 ´ 1´Mqq2δG1,G2 `
´s1

4
δG1`1,G2 `

´s1

4
δG1´1,G2

`
s2

4
e´iφδG1`2,G2 `

s2

4
eiφδG1´2,G2 , (2.29)

where G1, G2 P integers and 1 ď G1, G2 ď 2M`1 for a p2M`1q band model. Recall

that V1 “ ´s1ER and V2 “ s2ER with s1 and s2 being normalized lattice depth.

For a 5 band model with higher bands truncated, the matrix equation with M “ 2

is

»

—

—

—

—

–

pq̃ ´ 4q2 ´s1
4

s2
4
e´iφ 0 0

´s1
4

pq̃ ´ 2q2 ´s1
4

s2
4
e´iφ 0

s2
4
eiφ ´s1

4
q̃2 ´s1

4
s2
4
e´iφ

0 s2
4
eiφ ´s1

4
pq̃ ` 2q2 ´s1

4

0 0 s2
4
eiφ ´s1

4
pq̃ ` 4q2

fi

ffi

ffi

ffi

ffi

fl

»

—

—

—

—

–

Cα
q̃´4

Cα
q̃´2

Cα
q̃

Cα
q̃`2

Cα
q̃`4

fi

ffi

ffi

ffi

ffi

fl

“ ĂEα

»

—

—

—

—

–

Cα
q̃´4

Cα
q̃´2

Cα
q̃

Cα
q̃`2

Cα
q̃`4

fi

ffi

ffi

ffi

ffi

fl

(2.30)

We first show in Fig 2.3 the energy versus quasi-momentum q for a 5-band cal-

culation in the first Brillouin zone for a single lattice, i.e. s2 “ 0, with increasing

1 Since d “ λ1

2 , G0 “
2π
d “

π
λ “ 2k1, here k1 “ k sin

`

θ
2

˘

. For consistent notation, we write effect
wave vector as k instead of k1 in the text.
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q/k q/k q/k q/k

Figure 2.3: The band structure of a single color lattice of (a) s1 “ 0, (b) s1 “ 5,
(c) s1 “ 10, and (d) s1 “ 15 respectively calculated using a 5-band model.

lattice depth from s1 “ 0 to 15. Each energy band is labeled with a different color.

For s1 “ 0 the energy momentum dispersion is quadratic, as for a free particle. With

increasing the lattice depth, the bands flatten out and open up energy gaps between

the bands.

We compare the lattice potential and the band structure of the fundamental

lattice of s1 “ 10 to that of the bichromatic lattices of s1 “ 10, s2 “ 20, φ “ 0, 2π{35,

or π in Fig 2.4(a) through (d). As can be seen from the figure below, one creates

a periodic symmetric double well superlattice by choosing the relative phase φ “ 0.

Notice that the lowest two energy bands are brought close to degeneracy. A tiny

phase deviation from zero, for example φ “ 2π{35, almost does not change either

the lattice potential geometry or the band structure.

To get a physical insight, we solve the Schr:odinger equation for a single site of the
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(a)

(b)

(c)

(d)

Figure 2.4: Comparison of lattice potential (left) and band structure (right) be-
tween (a) the fundamental lattice of s1 “ 10 and (b) the bichromatic lattice of
s1 “ 10, s2 “ 20, φ “ 0, (c) φ “ 2π{35, or (d) φ “ π. The left column shows lattice
potential in units of ER of the λ1 “ 1064 nm lattice, as described in eq. 2.5 and
eq. 2.6. Where λ1 “ 1064 nm lattice is labeled red, λ2 “ 532 nm lattice is labeled
green, and the overall lattice is labeled black. The right column shows the band
structure, where all bands are labeled with different colors. Notice for (b) φ “ 0 and
(c) φ “ 2π{35, the lowest two bands are almost degenerate.
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(b)

(c)

(d)

Figure 2.5: Eigensolutions to the Schr:odinger equation for a single lattice site of (a)
the fundamental lattice of s1 “ 10 and (b) the bichromatic lattice of s1 “ 10, s2 “ 20,
φ “ 0, (c) φ “ 2π{35, or (d) φ “ π. In the left column the horizontal lines labeled
on the single site lattice potential (black curve), are the lowest three eigenenergies
in units of ER. The eigenfunctions of the ground state and the first excited state,
labeled black and blue, are plotted in the right column.

superlattice, rather than treating it as a lattice with periodic boundary conditions.

Using the same parameters as in Fig 2.4, results for the lowest three eigenenergies

and two eigenfunctions corresponding to the lowest two energies are shown in Fig 2.5.

Once again, we see the lowest two energy bands became degenerate when a symmetric

double is formed for relative phase φ “ 0. Comparing right column of Fig 2.5(a)

and (b), one finds the double well structure changes the ground state wavefunction
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(a) (b)

Figure 2.6: Generating a Dirac point in a bichromatic lattice. Band structure of
bichromatic lattice of s1 “ 4, s2 “ 1, (a) φ “ 0, and (b) φ “ π. For φ “ π, a Dirac
point occurs between the 2nd and 3rd band at the Brillouin zone center where the
two bands cross and the dispersion is linear.

significantly. With an almost non-existing phase shift of φ “ 2π{35, one can barely

tell any change in the lattice potential and the eigenenergies. However, the symmetry

of the ground state wavefunction is notably modified when comparing Fig 2.5(b) and

(c). For φ “ π, the ground state degeneracy is lifted, and the wavefunction resembles

that of a fundamental lattice.

We show in Fig 2.6 (a) and (b) that by properly choosing s1 “ 4, s2 “ 1 and

φ “ π, a Dirac point occurs between the second and third band at the Brillouin zone

center. The energy versus quasi-momentum dependence is linear, which mimics that

of a relativistic particle. A more detailed discussion is presented in Sec 6.2.1.

2.3 Quasi-momentum Distributions

Experimentally we control the chemical potential to control the band population.

In order to determine the chemical potential of the system with atoms loaded into
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the lattice, it is important to measure the quasi-momentum distribution of the gas

by doing a band map. Band mapping is accomplished by ramping down the lattice

potential gradually on a timescale that is fast compared to the tunneling timescale in

the lowest band of the lattice, but adiabatic with respect to interband transitions [59,

60]. By doing so, the Bloch waves are adiabatically transferred into plane waves and

the initial quasi-momentum distribution becomes the final momentum distribution,

which we measure with a time-of-flight absorption image.

To measure quasi-momentum distributions of atoms, most groups turn off all

traps and allow the atoms to expand freely for a time-of-flight before imaging the

density distribution. During the expansion, there should be no interactions between

the atoms in order to preserve their initial momentum. In our lab, we do not have

the capability to turn off the magnetic trap completely in a short time, and also 6Li

atoms are much lighter than, for example 40K. They tend to quickly fly outside the

accessible image region and can no longer be captured by the camera. Inspired by

Jochim’s work [7], and to accommodate what we have, we developed a new method

to measure the quasi-momentum distribution inside a harmonic trap. The harmonic

trap in which we conduct a band map is composed of the magnetic field curvature and

an adjustable power CO2 laser axial confinement. The advantages of band mapping

in a CO2 laser harmonic trap include the enhancement of signal to noise ratio due to

the radial confinement, and the flexible choice of band mapping time with the help of

the CO2 laser trap axial confinement. By letting the cloud expand in the harmonic

trap for one quarter period, t “ T {4, the spatial density distribution reveals the

momentum distribution at time zero, regardless of its initial position distribution.

With this technique, one can measure the population in all Bloch bands, which show

up in the higher Brillouin zones in the band map picture.

A simple physical picture is the following: The equation of motion of a classical
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particle moving in a harmonic trap is

xptq “ x0 cosωt`
p0

mw
sinωt, (2.31)

with x0 the initial position, p0 the initial momentum and ω the trap frequency. After

one quarter period t “ T
4
, ωT {4 “ π{2,

x

ˆ

t “
T

4

˙

“
p0

mω
. (2.32)

The position at T
4

is the initial momentum, independent of x0.

From a quantum mechanical point of view, one can describe the momentum dis-

tribution measurement generally using the Wigner function formalism. The Wigner

function W px, p, tq represents the phase space density distribution at time t, and is

defined as

W px, p, tq ”
ÿ

Ψ

PΨ

ż 8

´8

dε
eiεp{~

2π~
Ψ˚

´

x`
ε

2
, t
¯

Ψ
´

x´
ε

2
, t
¯

. (2.33)

Here Ψ is the wavefunction and x and p are position and momentum. For an ensem-

ble, the Wigner function is summed over all possible states Ψpx, tq with probability

PΨ.

Integrating W px, p, tq over p or x one obtains the position or the momentum

distribution,

Wx px, tq ”

ż 8

´8

dpW px, p, tq “
ÿ

Ψ

PΨ|Ψ px, tq|2,

Wp pp, tq ”

ż 8

´8

dxW px, p, tq “
ÿ

Ψ

PΨ|Ψ pp, tq|2. (2.34)

From the time-dependent Schr:odinger equation

i~
BΨ

Bt
“ ´

~2

2m

B2Ψ

Bx2
` V pxqΨ, (2.35)
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and eq. 2.33, one easily obtains the general equation of motion of the Wigner function

for any external potential V pxq.

BW px, p, tq

Bt
`
p

m

BW px, p, tq

Bx
´
BV pxq

Bx

BW px, p, tq

Bp

“

8
ÿ

s“1

ˆ

~
2

˙2s
1

p2s` 1q!

B2s`1V pxq

Bx2s`1

B2s`1W px, p, tq

Bp2s`1
. (2.36)

For any linear potential V pxq “ Fx, or quadratic potential V pxq “ kx2, the right

hand side of eq. 2.36 vanishes.

Let’s look closely at the case where V pxq “ 1
2
mω2

0x
2, since in our experiment,

the atomic gas is released into a harmonic potential coming from the CO2 laser

dipole trap and the magnetic bowl. Assuming W px, p, tq “ W pfpx, p, tq, gpx, p, tqq,

we require

BW

Bf

„

Bf

Bt
`
p

m

Bf

Bx
´mω2

0x
Bf

Bp



“ 0,

BW

Bg

„

Bg

Bt
`
p

m

Bg

Bx
´mω2

0x
Bg

Bp



“ 0. (2.37)

The solutions of the above coupled differential equations are

fpx, p, tq “ x cospω0tq ´
p

mω0

sinpω0tq,

gpx, p, tq “ mω0x sinpω0tq ` p cospω0tq. (2.38)

Notice at zero time fpx, p, t “ 0q “ x0 and gpx, p, t “ 0q “ p0, f and p reduces

to position and momentum at zero time. For small w0t, f “ x0 ´
p0
m
t, and g “

p0 `mω2
0x0t. Thus, the Wigner function at time t is related to its value at t “ 0,

where W p0q rx, ps ” W px, p, t “ 0q via the following expression,

W px, p, tq “ W p0q

„

x cospw0tq ´
p

mω0

sinpω0tq, mω0x sinpω0tq ` p cospω0tq



. (2.39)
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For an evolution times of 1{4 the trap period [61], where ω0t “
π
2

W

ˆ

x, p,
T

4

˙

“ W p0q

„

´
p

mw0

, mw0x



. (2.40)

Integrating over p,

Wx

ˆ

x,
T

4

˙

“ mw0W
p0q
p rmw0xs . (2.41)

We see that the normalized position distribution at T {4 is equal to the normalized

momentum distribution at t “ 0 with p “ mw0x.

By adiabatically lowering the optical lattice, we convert the quasi-momentum into

momentum. Releasing the cloud into the harmonic trap for T {4 before taking an

absorption image, we obtain the band map of the non-interacting gas. The number

of particles in each band and quasi-momentum can thus be measured. Details of

band map experiments are presented in Sec 3.7.

One can numerically simulate the momentum or quasi-momentum distribution for

a Bloch state Ψα
q pxq. The corresponding Wigner function for a Bloch state following

the definition in eq. 2.33 is

W px, pq “
ÿ

G,G1

Cα
G1
˚Cα

G

eipG´G
1qx

Nd

1

2π

ż Nd
2

´Nd
2

dε eiεpp´q´
G`G1

2
q

“
ÿ

G,G1

Cα
G1
˚Cα

G

eipG´G
1qx

Nd

1

2π

sin
“

Nd
2
pp´ q ´ G`G1

2
q
‰

Nd
2
pp´ q ´ G`G1

2
q

. (2.42)

The momentum distribution for the Bloch state is then

Wα
q ppq “

ż Nd
2

´Nd
2

dxW px, pq

“
ÿ

G,G1

Cα
G1
˚Cα

G IG,G1
1

2π

sin
“

Nd
2
pp´ q ´ G`G1

2
q
‰

Nd
2
pp´ q ´ G`G1

2
q

. (2.43)
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The integral

IG,G1 ”

ż Nd
2

´Nd
2

dx eipG´G
1qx
“
eipG´G

1qNd
2 ´ e´ipG´G

1qNd
2

2ipG´G1qNd
2

Nd “ Nd δG,G1 , (2.44)

since pG ´ G1qNd
2
“ 2π

d
pn ´ n1qNd

2
“ pn ´ n1qNπ, N P even2 and n, n1 P integers.

Eq. 2.43 becomes

Wα
q ppq “

ÿ

G

|Cα
Gpqq|2

Nd

2π

sin
`

Nd
2
pp´ q ´Gq

˘

Nd
2
pp´ q ´Gq

“
ÿ

G

|Cα
Gpqq|2 δpp´ q ´Gq, (2.45)

where the δpp´ q ´Gq comes from the limit NdÑ 8.

To calculate the momentum distribution, we need to determine the chemical

potential, including the Bloch states and the transverse harmonic states in the radial

direction. For transverse harmonic confinement with harmonic frequency ωK, the

transverse density of states is D pεKq “ εK
p~wKq2

. For each Ψα
q state with energy Eα

q ,

the allowed radial energies for a given global chemical potential µ are limited by

0 ď εK ď µ´Eαpqq. Summing over all α, q states, the total number of states equals

to the total number of atoms of one spin state NÒ,

NÒ “
ÿ

α,q

ż µ

0

dεKD pεKqΘ rµ´ Eα
pqq ´ εKs

“
ÿ

α,q

rµ´ Eαpqqs2

2 p~wKq2
Θ rµ´ Eα

pqqs . (2.46)

The probability of being in Bloch state Ψα
q given the global chemical potential µ is

then

P µ
α pqq “

rµ´ Eαpqqs2

NE2
F

Θ rµ´ Eα
pqqsΘr1´ pq{kq2s, (2.47)

2 Recall that quasi-momentum is restricted within the 1st Brillouin zone, i.e. ´G0

2 ă q “

2πm{Nd ă G0

2 . Therefore ´N
2 ă m ă N

2 ´ 1 with N being even numbers.
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with N being the number of lattice sites and EF “ ~ωK
b

2NÒ
N

being the local radial

Fermi energy at each lattice site. Notice that
NÒ
N

is the number of spin up state per

site, and the theta function restricts the range of q to be within the fist Brillouin

zone.

With a little algebra, one can rewrite the above equation in dimensionless form,

where all energies are expressed in units of ER and quasi-momentum q is in units of

the wave vector k, i.e., µ “ rµER, EF “ ĂEF ER, Eαpqq “ rEαprqqER.

1 “
1

ĂEF
2

ÿ

α

1

N

N{2
ÿ

n“´N{2

„

rµ´ rEα

ˆ

2n

N

˙2

Θ

„

rµ´ rEα

ˆ

2n

N

˙

(2.48)

Given a global chemical potential µ̃, one can use the above equation to solve for the

radial Fermi energy ĂEF or vice versa. The probability distribution in normalized

units is then

P µ
α prqq “

rrµ´ rEαprqqs
2

ĄEF
2 Θ

”

rµ´ rEαprqq
ı

Θ r1´ rq2s , (2.49)

where
ş1

0
drqP µ

α prqq “ 1.

With eq. 2.49 one can plot the probability distribution within the first Brillouin

zone for each band, as shown in Fig 2.7. The band probability distributions are

calculated for a lattice depth of s1 “ 20, number of lattice sites N “ 500, chemical

potential of µ “ 3ER, 10ER, and 15ER respectively. The radial Fermi energy is

calculated to be 8.83ER, 17.74ER, 25.38ER based on the given parameters and the

normalization condition. The probability of occupying higher bands is enhanced by

increasing the chemical potential.

Using the probability distribution function in eq. 2.49, one can obtain the normal-

ized average momentum distribution by summing over the Wigner function Wα
q ppq
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(b) (c)(a)

Figure 2.7: The band probability distribution within the first Brillouin zone cal-
culated for a lattice depth of s1 “ 20, number of lattice sites N “ 500, chemical
potential of µ “ 3ER, 10ER, and 15ER respectively. Various colors refers to different
bands: Black is the first band, blue is the second, red is the third, green is the fourth,
purple is the fifth.

for each Bloch state Ψα
q , i.e. ĂW ppq “

ř

α,q P
µ
α pqqW

α
q ppq. In normalized units,

ĂW prpq “ 1
2

ř

α

ř

G |Cα
Gprqq|2P µ

α prqq δprp´ rq ´ rGq (2.50)

Notice the factor 1
2

comes from the symmetric normalization
ş8

´8
ĂW prpq drp “ 1.

With this expression, we can plot the momentum or the quasi-momentum distribu-

tion. The momentum distribution, labeled as blue in Fig 2.8, corresponds to abruptly

turning off of the lattice, thus the coefficients Cα
G in eq. 2.49 are evaluated for the

given lattice depth.

The quasi-momentum distribution, labeled as red in Fig 2.8, corresponds to adi-

abatic lowering of the lattice to a shallow depth before releasing the cloud, where

the coefficients Cα
G are evaluated at s1 “ 0.01. The energy momentum dispersion

for a zero lattice depth is quadratic, the same as for free particles. Therefore the
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(a) (b) (c)

Figure 2.8: The normalized momentum and quasi-momentum distributions of
atoms inside a lattice. The momentum distribution (blue, corresponding to abrupt
turn off of the lattice) and the quasi-momentum distribution (red, corresponding to
adiabatic lowering of the lattice) in normalized units calculated for a lattice depth of
s1 “ 20, number of lattice sites N “ 500, chemical potential of (a)µ “ 3ER, (b)15ER,
and (c)35ER respectively.

coefficients Cα
G are

C1
G1
“ δG1,0 ;

C2
G1
pq1q “ δG1,´G0Θrq1s ` δG1,G0Θr´q1s ;

C3
G1
pq1q “ δG1,G0Θrq1s ` δG1,´G0Θr´q1s ; (2.51)

similarly for all the higher bands α “ 4, 5..... Therefore, the normalized momentum

distribution, which determines the band map, is

ĂW prpq “
1

2
pP µ

0 prpq `Θrrp` ĂG0sP
µ
2 prp` ĂG0q `Θr´rp` ĂG0sP

µ
2 prp´ ĂG0q

`Θrrp´ ĂG0sP
µ
3 prp´ ĂG0q `Θr´rp´ ĂG0sP

µ
3 prp` ĂG0q ` ...q. (2.52)

One can see that the theta functions map out the probability distributions of each

band in the regions rp˘ nĂG0.
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The distributions shown in Fig 2.8 are calculated for a lattice depth of s1 “ 20,

number of lattice sites N “ 500, and chemical potential of µ “ 3ER, 15ER, and 35ER

respectively. The corresponding radial Fermi energies are calculated to be 8.83ER,

25.38ER, 63.57ER based on the given parameters for the normalization condition.

The shoulders of red plateaus show up at multiples of p{k, which corresponds to

various Brillouin zone boundaries. Once again, we see the effect of occupying higher

bands due to the increase of the chemical potential. The quasi-momentum distri-

bution looks more and more like a Gaussian shaped momentum distribution as one

keeps raising the chemical potential to fill up more bands.

Details of the band map experiments for the infrared lattice, the green lattice

and the bichromatic lattice are reported in Sec 3.7.

2.4 Lattice Modulation

𝝍α’

𝝍α

Figure 2.9: The interband transition between states Ψα and Ψα1 induced by lattice
depth sinusoidal modulation preserves quasi-momentum.

In this section we study inducing transitions between different bands by period-

ically modulating the lattice depth. Due to the translational symmetry of the lat-

tice potential, only transitions between different energy bands that conserves quasi-
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momentum are allowed, as illustrated in Fig 2.9. We will give a detailed derivation

below. Thus one can treat such modulation process as a transition for a two-level

system.

We can incorporate the modulation by adding a time-dependent oscillating per-

turbation to the lattice potential,

H “
p2

2m
` V pxqp1` ε cospωtqq (2.53)

where H0 “
p2

2m
` V pxq is the unperturbed Hamiltonian and H 1 “ εV pxq cospωtq is

the perturbation, with ε being small.

We can define an effective Rabi frequency Ω as

Ω “ Ωα1α
pqq “

1

~
ε Tα

1α
q1“q, (2.54)

for a transition between Eα
q and Eα1

q at quasi-momentum q. The transition ma-

trix element Tα
1α

q1“q will be defined below in eq. 2.58. The time-dependent transition

probability can be expressed as

Pα,α1
pε, ω, τ, qq “

Ω2

Ω12
sin2

ˆ

Ω1τ

2

˙

. (2.55)

Here Ω1 “
?

Ω2 `∆2, the detuning is ∆ “ ∆α1αpqq ” ω´ Eα
1
pqq´Eαpqq

~ , where ω is the

frequency of the modulation of amplitude ε and duration τ .

The Bloch states Ψα
q of band index α and quasi-momentum q are the eigenstate

of H0,

Ψα
q pxq “

1
?
Nd

ÿ

G

Cα
q`G eipq`Gqx, (2.56)

H0Ψα
q pxq “ En

q Ψα
q pxq. (2.57)
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We define the transition matrix element Tα
1α

q1q

Tα
1α

q1q “

ż Nd

0

dxΨ˚α1

q1 pxqV pxqΨ
α
q pxq

“

N´1
ÿ

n“0

ż d`nd

nd

dxΨ˚α1

q1 pxqV pxqΨ
α
q pxq. (2.58)

Using the same trick of changing variables x1 ” x ´ nd as in eq. 2.20, the above

equation becomes

Tα
1α

q1q “

N´1
ÿ

n“0

ż d

0

dx1 Ψ˚α1

q1 px
1
` ndq V px1 ` ndq Ψα

q px
1
` ndq.

Since the lattice potential is periodic, i.e. V px1 ` ndq “ V px1q, and the Bloch states

obey Ψα
q px

1 ` ndq “ eiqnd Ψα
q px

1q,

Tα
1α

q1q “

N´1
ÿ

n“0

eindpq´q
1q

ż d

0

dx1Ψ˚α1

q1 px
1
q V px1q Ψα

q px
1
q.

Using the same trick as in eq. 2.21, the geometric series summed over n reduces to

a Kronecker delta δq1q, then

Tα
1α

q1q “ δqq1
ÿ

G1G

C˚αq`G1 C
α
q`G

ż d

0

1

d
dx1eipG´G

1qx1V px1q. (2.59)

For V pxq “ V1 cos2p2kxq, by ignoring the constant offset of V1{2, one can write

V pxq “ V1
4
peiG0x ` e´iG0xq where G0 “ 2k,

ż d

0

1

d
dx1eipG´G

1˘G0qx1 “ δG1,G˘G0 . (2.60)

Dividing by ER yields the dimensionless transition matrix elements, T “ rTER,

rTα
1α

q1q “ δqq1 rV
Gmax´G0

ÿ

G“Gmin

`

C˚αq`G Cα
q`G`G0

` C˚αq`G`G0
Cα
q`G

˘

, (2.61)
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where rV “ V1{p4ERq “ ´s1{4 and Ψα
q pxq “

ř

GC
α
q`Ge

ipq`Gqx is the Bloch solution

for the un-perturbed Hamiltonian in eq. 2.57. Note that the sum is truncated at

Gmax ´ G0. For a 2M ` 1 band model, the range of G is G P r´MG0,´pM ´

1qG0, ....,´G0, 0, G0, ...,MG0s where Gmin “ ´MG0 and Gmax “ MG0. In order

not to exceed the matrix dimension when summing over G with the extra G0 shift

due to the coupling potential V pxq, the upper limit of the summation is modified

accordingly to Gmax ´ G0. For a 5-band model, Gmin “ ´2G0 and Gmax “ 2G0.

The sum then runs from ´2G0 ď G ď G0. The δq,q1 indicate that sinusoidally

modulating of the lattice depth allows transitions only between states having the

same quasi-momentum, as shown in Fig 2.9.

Consider modulating only the green lattice, for atoms loaded into the bichromatic

lattice, i.e.,

H0 “
p2

2m
` V1 cos2 kx` V2 cos2

ˆ

2kx`
φ

2

˙

(2.62)

H 1
“ εV2 cos2

ˆ

2kx`
φ

2

˙

cospωtq. (2.63)

Analogous to the previous case, we ignore the offset and write V pxq “ V2
4
pei2G0x`iφ`

e´i2G0x´iφq when computing the dimensionless transition matrix element. Then,

rTα
1α

q1q “ δqq1 rV
Gmax´2G0

ÿ

Gmin

`

C˚αq`G Cα
q`G`2G0

e´iφ ` C˚αq`G`2G0
Cα
q`Ge

iφ
˘

. (2.64)

Here rV “ V2{4ER and Ψα
q pxq “

ř

GC
α
q`Ge

ipq`Gqx is the eigenvector of eq. 2.62. In

order not to exceed the matrix dimension when summing over G with the extra

2G0 shift due to the coupling potential V pxq, the upper limit of the summation is

modified accordingly to Gmax ´ 2G0.

We show in Fig 2.10 the transition matrix element squared for transitions from

the ground band to all higher bands, when modulating a single color lattice. Apart
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(a) (b)

Figure 2.10: Interband transition matrix element squared for modulating a single
color lattice of (a) s1 “ 10 and (b) s1 “ 20. Colors denote transition between
different bands. Blue: 1Ñ2, Red: 1Ñ3, Green: 1Ñ4, Purple: 1Ñ5.

(a) (b)

Figure 2.11: Interband transition matrix element squared for modulating the
fundamental(s1) component of a bichromatic lattice of s1 “ 8, s2 “ 8, (a) φ “ π and
(b) φ “ 0. Colors denote transition between different bands. Blue: 1Ñ2, Red: 1Ñ3,
Green: 1Ñ4 Purple: 1Ñ5
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(a) (b)

Figure 2.12: Interband transition matrix element squared for modulating the
secondary(s2) component of a bichromatic lattice of s1 “ 8, s2 “ 8, (a) φ “ π
and (b) φ “ 0. Colors denote transition between different bands. Blue: 1Ñ2, Red:
1Ñ3, Green: 1Ñ4 Purple: 1Ñ5

from noticing the quasi-momentum dependence, also note that both Fig 2.10(a) and

Fig 2.10(b) show enhanced 1 Ñ 3 transitions compared to all other transitions.

Fig 2.11 shows the interband transition element squared between the ground

band and all higher bands when modulating the fundamental(s1) component of a

bichromatic lattice of s1 “ 8, s2 “ 8, for relative phase of φ “ 0 and π. When φ “ 0,

which corresponds to a periodic double well lattice, transitions for 1 Ñ 2 and 1 Ñ 4

are greatly enhanced. Fig 2.12 shows the result when modulating the secondary(s2)

component of a bichromatic lattice of s1 “ 8, s2 “ 8, for relative phase of φ “ 0 and

π. The results for the two phases are identical. Comparing Fig 2.11 to Fig 2.12, one

finds enhancement in particular for 1 Ñ 4 or 1 Ñ 5 transitions by modulating the

secondary lattice.

The lattice modulation modifies the band occupation probability. We simulate a

band map after lattice modulation by including the parametric transition probability

Pα1,αpε, ω, τ, q̃q, in the momentum distribution ĂW pp̃q in eq. 2.49. For a selected ω to
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induce transitions from state α to α1, the momentum distribution of state α1 is

ĂWα1
prpq “

ÿ

G

|Cα1

G prp´
rGq|2Pα1,α

pε, ω, τ, rp´ rGq

”

rµ´ rEα
´

rp´ rG
¯ı2

ĂEF
2 Θ

”

rµ´ rEα
prp´ rGq

ı

Θ
”

1´ prp´ rGq2
ı

(2.65)

The remaining momentum distribution in state α is

ĂWα
prpq “

ÿ

G

|Cα
Gprp´

rGq|2
”

1´ Pα1,α
pε, ω, τ, rp´ rGq

ı

”

rµ´ rEα
´

rp´ rG
¯ı2

ĂEF
2 Θ

”

rµ´ rEα
prp´ rGq

ı

Θ
”

1´ prp´ rGq2
ı

(2.66)

Summing over the momentum distributions of all bands, one obtains

ĂW prpq “ ĂWα1
prpq `ĂWα

prpq `
ÿ

β‰α,α1

ĂW β
prpq . (2.67)

We show in Fig 2.13 the simulated band map for modulating the one color lattice of

s1 “ 8 with modulation amplitude ε “ 13% and τ “ 1.3 ms at 110 kHz for a chemical

potential of µ “ 3ER. For this chemical potential, only the ground band is initially

filled before the modulation. The modulation frequency corresponds to a 1 Ñ 3

transition at normalized quasi-momentum q̃ “ 0.6. Details of lattice modulation

experiments are presented in Sec 3.8.
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(b)

q/k q/k

E[q] (kHz) W[p]

(a)

Figure 2.13: Band map simulation after lattice modulation of a lattice depth of
8ER with a 13% modulation amplitude for 1.3 ms at 110 kHz. (a) Band structure of
a 8ER lattice in units of kHz. The driving frequency 110 kHz corresponds to a 1 Ñ 3
transition at q̃ “ 0.6. (b) The simulated band map result using eq. 2.54, showing
depletion of the initial population in the ground band (black) and transfer to the
second excited band (red).
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3

Experimental Methods

In this chapter, I begin with the basic experimental methods for generating a de-

generate Fermi gas sample in Sec 3.1. The new bichromatic optical lattice with

tunable relative phase and repulsive end caps is presented in Sec 3.2 and 3.3.

The lattice alignment procedure and the lattice loading procedure are presented in

Sec 3.4 and 3.5. The lattice calibration using Kapitza-Dirac scattering is presented

in Sec 3.6. The band mapping method for the bichromatic lattice is presented in

Sec 3.7. Lastly I describe the trap frequency measurements, employing parametric

resonance in Sec 3.8.

3.1 Standard Cooling and Trapping

In brief, the atom sample preparation involves an atomic source and techniques of

cooling and trapping. The solid 6Li is stored in an oven with a long hollow wick,

which directs an atomic beam towards the main vacuum chamber. The oven is heated

up to about 400˝C to vaporize the solid, generating a hot gas traveling along the

nozzle, through a Zeeman slower, which decelerates the atoms from about 1 km{s

to 30m{s, slow enough to be trapped in a magneto-optical-trap (MOT). The MOT
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is composed of a pair of anti-Helmholtz coils and three orthogonal retroreflected

laser beams, which are red-detuned with respect to D2 line of 6Li, and is located

at the center of the chamber. The atoms enter the MOT region and are cooled to

the Doppler limit of 140 µK. The repump beams, close to resonance with the D2

line, are turned off so atoms are pumped into the 2S1{2 F “ 1{2 ground states. All

MOT beams and the quadrupole fields are turned off at the end, and approximately

two million atoms are loaded into a far off-resonance CO2 laser dipole trap (FORT),

which is superposed on top of the MOT.

Then we turn on the bias magnetic field produced by a pair of high field magnets

to roughly 8 G to split the degenerate 6Li hyperfine states. We apply an rf pulse

corresponding to the energy difference between the lowest two states |1y and |2y to

produce a population balanced two state mixture. The bias magnetic field is then

increased to 834 G near a |1y-|2y Feshbach resonance, where the enhanced collision

rate causes atoms that gain energy during the collision to escape the trap more

efficiently, while leaving lower energy atoms trapped. We refer to this stage as free

evaporation. At the end of this stage, we are left with 450 thousand atoms per spin

state at 50 µK.

The atoms are further cooled down after evaporation by lowering the FORT,

which we refer to as forced evaporative cooling. At the end of forced evaporative

cooling, the atomic sample reaches the temperature of about 10 to 100 nK. For more

details about general degenerate atom sample preparation, please refer to previous

theses by our group [62]. After evaporative cooling, the gas is ready to load into the

bichromatic optical lattice. The procedure is presented in Sec 3.4.

3.2 Bichromatic Lattice Setup

The bichromatic lattice system shown in Fig 3.1 and Fig. 3.2 is comprised of two

optical lattices, a fundamental lattice of λ1 “ 1064 nm and a secondary lattice of
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λ2 “ 532 nm. The 1064 nm infrared beam is generated from a IPG 30W fiber laser

(model: YLR-30-1064-LP-SF) and has a linewidth smaller than 100 kHz. We take

5W out of this beam to send into a frequency doubling cavity (Toptica SHG pro)

with a light convertion efficiency of about 40% to generate a 2W 532 nm beam at

exactly double the frequency of the pump beam. Each of the beams passes through

a similar set of optics, as shown in Fig 3.1. The beams first go through a pair of

phase-locked high power AOMs made of TeO2. We send about 3W of each beam

in to the AOMs, which have 80% efficiency or higher for the first order diffracted

beam. The phase-locked module modulates the 1064 nm beam at 80 MHz and the

532 nm beam at 160 MHz, which preserves the two-to-one ratio of their frequencies.

Then each beam goes through a spatial filtering setup to clean up the profile before

coupling into a high power polarization maintaining optical fiber (Oz optics). For 1

W output of the fiber, the coupling efficiency is around 60%.

A
O

M
2

1064nm

532nmA
O

M
1

SF

SF

mirror

λ/2 wave plate

PL cube

Beam shaping telescope

SF Spatial filter setup

Higher power PM fiber

Ϯ  Note that AOM1 and AOM2 are phase locked.

Figure 3.1: Setup for generating bichromatic lattice beams. The 532 nm beam is
generated by pumping a frequency doubling cavity with a 1064 nm beam. The beam
goes through a phase-locked AOM, some shaping optics, and spatial filtering setup
before coupling into a polarization maintaining optical fiber.

The lattice setup is shown in Fig 3.2. The outputs of the two fibers are each
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mounted on an ultrastable mirror mount. The two beams go through individual

sets of mirrors and focusing lenses, and then are combined on a common dichroic

beam splitter before going through the vacuum chamber. Note that the two beams

are both vertically polarized, i.e., pointing into the paper in Fig 3.2, to achieve

maximum interference intensity, since the lattices are constructed by intersecting

two beams at a θ “ 91˝ angle as shown in Fig 2.2. All optics are located on top of a

3-axis translational stage. A window with antireflection coating is inserted after the

output of each fiber to pick off a small portion of the beam, which is then focused

on to a photodiode for control and stabilizing the lattice beam intensity using a

servo. The individual sets of mirrors allows us to easily align the two beams. The

individual focusing lenses are adjusted such that the two beams roughly focus in the

same plane, with the measured 1{e field radius at the focus being 110µm for 1064

nm beam, and 90µm for 532 nm beam. The Rayleigh lengths for the beams are

roughly 3 cm and 4 cm respectively.

Higher power PM fiber

mirror

λ/2 wave plate

PL cube

Beam shaping telescope

Babinet phase compensator

Pick off window

Photodiode

Dichroic combiner

Lens

532/1064 nm dual wave plate

CO2

Figure 3.2: Bichromatic lattice setup. The λ1 “ 1064 nm and λ2 “ 532 nm beams
are combined on a dichroic beam splitter before co-propagating through the chamber.
A Babinet compensator is inserted in the second path to adjust the relative phase
between the two color lattices.

The two beams co-propagate after the combining dichroic beam splitter, and go
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through the atomic cloud twice. The beams enter the chamber the first time and

focus near the atom cloud. We refer to this as the first path. After passing through

the chamber, they are collimated with a common lens and go through a Babinet

phase compensator before passing through a common focusing lens. The beams

enter the chamber again, which we refer to as the second path, and focus around

the atoms. The interference between the two paths creates a standing wave pattern

along the CO2 laser beam. The lattice beam size measurements around the focal

point of the first and second path are shown in Fig 3.3.

(a) (b)

Figure 3.3: Lattice beam size measurements near the focal plane of (a) the first
path, and (b) the second path. The λ1 “ 1064 nm beam is labeled red, and the
λ2 “ 532 nm beam is labeled green. The two beams roughly focus at the same place,
and each has a size of roughly 100 µm.

By construction, the relative phase between the intensity patterns of the two

color beams is locked due to traveling through the same optical path, although the

combined lattice may drift slowly in space. With the Babinet phase compensator,

one can change the relative phase of the intensity patterns, which results in dou-

ble well potentials with tunable symmetry. In order to maximize the difference in

phase retardation using the Babinet compensator, we align the 1064 nm and the

532 nm beam polarization each to the fast and slow axis of the birefringent crystal

quartz. Note that the 532/1064 nm dual-wavelength waveplate is made of two quartz

waveplates combined with their optical axes orthogonal to one another. The dual-
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wavelength waveplates placed before and after the Babinet compensator in Fig 3.2

rotate the polarization of the 532 nm beam by λ{2 while producing a retardation of

λ for the 1064 nm light, which has no effect.

3.3 End Caps

As mentioned earlier, our composite trap is formed by a bichromatic lattice super-

posed on a CO2 laser trap. We increase the chemical potential by increasing the

radial confinement of the CO2 laser trap. As described in Sec 2.3, the probability

of occupying higher bands is enhanced by increasing the chemical potential. Since

atoms in higher bands have larger tunneling rate, they will tunnel out of the region

where the maximum lattice depth is located, therefore causing a non-uniform lattice

population. We employ end caps constructed by two repulsive λ “ 532 nm sheets,

which are focused on the CO2 laser trap and placed on both ends of the bichromatic

lattice, as shown in Fig 3.5. These end caps prevent tunneling by providing extra

confinement and preserve the atom number per unit area.

The end caps are particularly useful when investigating properties of the sec-

ondary λ2 “ 532 nm lattice alone. Atoms are repelled from the optical potential of a

blue-detuned beam. By first loading atoms into an 1064 nm dipole trap and turning

on two green end caps, the atoms are confined in a region between the two caps,

even when the 1064 nm dipole trap is turned off. With the radial confinement of the

soft CO2 dipole trap, we can load the atoms into the green lattice by confining the

atoms within the region inside the caps along the CO2 laser beam. The power we

use for each green sheet is nominally 850 mW.

The end caps contain two sheets, each has a waist of 10 µm-by-100 µm at the focal

plane as shown in Fig 3.4. They are focused around the center of the CO2 dipole trap

with adjustable separation in between, as shown in Fig 3.5. To generate the end caps,

the 532 nm light generated from a Verdi V-10 (Coherent) is split and coupled into
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Figure 3.4: The profile of end caps taken by a CCD camera. The Gaussian waist
size of each sheet is 10 µm-by-100 µm.

Higher power PM fiber

mirror

λ/2 wave plate

PL cube

Fiber Output Collimator

Lens

Cylindrical Lens

CO2

Figure 3.5: Cap beam optics. Two 1-inch cross-polarized green beams are com-
bined before going through a common final focusing lens. The relative position
between the two sheets can be adjusted by moving the two mirrors near the two
cubes. End caps are focused on the CO2 laser trap and placed on two ends of the
optical lattice.

two high power PM fibers (Oz optics). The beam at each fiber output is expanded to

1 inch before going though a pair of cylindrical lenses to modify its aspect ratio to the

desired dimension of the caps at the focal plane. The two beams are set to be cross

polarized before being combined in order to prevent interference, and go through a

common focusing lens. By going into the lens with slightly different incident angles,

we create two parallel sheets around the focus of the lens. The relative position

between the two sheets can be adjusted using the two mirrors near the two cubes.
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3.4 Lattice Alignment

The lattice beam alignment procedure is as follows. First make sure the 1064 nm

and 532 nm beams are on top of each other as closely as possible. This is very

critical because the repulsive 532 nm trap cancels the attractive 1064 nm trap to

some extent. Thus, any misalignment between the two beams leads to a nonuniform

potential and therefore a very nonuniform atom distribution. We check the overlap

at two spatial points with CCD cameras, to see that the center of two beams are

aligned within the resolution of the camera, which is around 5 µm. The setup has

sufficient stability that the two color alignment stays nominally the same throughout

the day.

Since the two beams are propagating together after being combined on the

dichroic beam splitter, it is to our convenience to align the beams on the atoms

using only the red-detuned 1064 nm beam, since the blue-detuned 532 nm light does

not trap atoms. Because the 1064 nm beam has a few cm long Rayleigh length,

it is unlikely to miss its focal point of the CO2 dipole trap along the propagation

direction.

We measure the distances very carefully when initially setting up the beams.

Apart from the first 1064 nm beam propagation direction â as noted in Fig 3.6,

there are two other directions, one vertical denoted as b̂, and the other along the the

CO2 laser beam propagation direction denoted as ĉ. We have two cameras in both

the horizontal and the vertical direction to help us to do the alignment.

To begin with, we record the center position of the CO2 laser dipole trap on both

cameras. We ramp up the 1064 nm lattice beam adiabatically1, with the second path

blocked, immediately after the lowest point of forced evaporative cooling process of

1 In order to load the atoms into the ground state of the optical lattice, the ramping process
should be adiabatic. We use 200 ms for the exponential ramp time, and verified that cloud radii
after ramping up and down of the lattice remains the same as that before the ramp, indicating no
increase in energy.
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Figure 3.6: Lattice beam alignment using horizontal and vertical cameras. This
figure illustrates the first 1064 nm lattice beam direction with respect to the CO2

laser dipole trap, and the locations of the two cameras.

the CO2 laser trap. Only when the first 1064 nm path is placed close enough (À200

µm ) to the CO2 laser trap will the atoms feel the extra confinement potential and

shift the cloud position towards the global minimum of the combined trap. We

place the first path vertically and horizontally such that the center position of the

cloud remains the same as that of the cloud in the CO2 trap alone, as shown in

Fig 3.7(a). Then we move the translation stage along the propagation direction of

the first 1064 nm path by several centimeter in and out, every time re-adjusting the

other two directions so that the beams still align reasonably well with the CO2 laser

trap. Within a few cm range, there is not much difference in the loading. Thus,

we conclude the focus is soft in this direction and further alignment is not needed.

For the second 1064 nm lattice beam path, do the same thing by making the cloud

center position the same as the cloud in the CO2 laser trap alone, but this time we

turn off the CO2 for about 3 ms to allow the cloud to expand along the first lattice

beam direction, as shown in Fig 3.7(b). Without turning off the CO2 laser trap, the

cloud will always be confined in the same radial region because radial confinement is

dominated by the CO2 laser dipole trap and one can not judge how well the second
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lattice beam is aligned with the first one. Now that we have the first 1064 nm lattice

beam and the first+second 1064 nm lattice beams all with the same center position

as the CO2 laser trap center, as shown in Fig 3.7(c), the alignment procedure is

completed.2

(a) (b) (c)

Figure 3.7: These three pictures illustrate how we align the two intersecting 1064
nm lattice beams. (a) Showing how the cloud looks when the first path cross the
center of the CO2 laser dipole trap. (b) Allowing atoms to expand along axial
direction of the first infrared lattice beam dipole trap. (c) We complete the alignment
procedure by aligning the second path to the same center position.

Since our lattice is formed by two intersecting beams rather than by retroreflected

beams, it is important to measure the angle between these two beams in order to

know two important scales, the lattice spacing d and the corresponding recoil energy

ER, for our lattice system. The first lattice beam direction can be found by turning

off the CO2 laser trap. Then the cloud would expand along the 1064 nm dipole trap

as shown in Fig 3.8(b). For convenience, we rotate the camera such that the CO2

trap axial direction lies nominally parallel to the horizontal axis of the camera CCD.

The angle between the first infrared beam and the CO2 laser axial direction, α,

2 For the application when caps are needed, the sheet beams are aligned to the CO2 and placed
at the edges of the atomic distribution of the infrared dipole trap or infrared lattice, depending on
whichever one is needed.
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(a) (b) (c)

α β

Figure 3.8: Measuring the intersection angle between the two lattice beams. The
horizontal dashed line denotes the axial CO2 laser dipole trap direction. (a) Angle
between two lattice beams is θ “ π ´ 2pα ´ βq “ 91˝. Effective lattice spacing
d “ 0.746µm and recoil energy of the 1064 nm lattice is ER “ h ˆ 14.9 kHz. (b)
Angle between the first 1064 nm path and the CO2 is α “ 48.99˝. (c) Angle between
the 1064 nm lattice and the CO2 is β “ 4.48˝.

can be measured. Pulsing the lattice on the atoms imprints net momentum transfer

along the lattice direction. Therefore by looking at the Kapitza-Dirac scattering

pattern after the pulse and fitting the centers of each higher order diffraction to

draw a straight line connecting those centers, we can find the direction of the lattice

beam and extract its angle β, as shown in Fig 3.8(c). Notice that due to the limitation

of the chamber geometry, the lattice is rotated slightly from the axial direction of

the CO2 laser beam. With α and β, the angle between the two intersecting beams is

θ “ π´2pα´βq “ 91˝. Thus, our optical lattice as discussed in eq. 2.8, has a lattice

spacing of d “ λ

2 sinp θ2q
“ 0.746µm, which is smaller than the resolution of our imaging

setup (3 µm). The recoil energy of the infrared lattice is ER “
h2 sin2p θ2q

2mλ2
“ h ˆ 14.9

kHz. The lattice depth is calibrated by Kapitza-Dirac scattering, presented in detail

in Sec 3.6.
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3.5 Lattice Loading

We start loading atoms into the lattices immediately after the CO2 has reached

the lowest point at the end of the forced evaporative cooling process. For example,

consider the loading into a bichromatic lattice. The 1064 nm lattice ramps up adi-

abatically for 200 ms. Simultaneously the CO2 laser trap is raised to a desired final

shallow trap depth. The atoms sit inside the composite trap of full 1064 nm lattice

and CO2 for about 200 ms before ramping up the 532 nm lattice in 200 ms. We wait

for 300 ms for the atoms to reach thermal equilibrium in the overall lattice before

any manipulation.

Physical manipulation includes trap modulation for interband transitions, ap-

plying a radio-frequency pulse or resonant optical pulse to remove one spin state,

or lowering the lattice to map out the band population. After the physical manip-

ulation, we take absorption image in situ or with a time-of-flight. The timing is

schematically shown in Fig 3.9.

time

Figure 3.9: Loading atoms into a bichromatic lattice. Load into the 1064 nm
lattice, wait to reach equilibrium, then turn on the 532 nm lattice, and wait to reach
thermal equilibrium before physical manipulation.

To obtain a higher Fermi energy when needed, the caps can constrain atoms

inside the superlattice region under stronger radial compression from the CO2 laser

trap. The time ordering sequence is complicated, as shown in Fig 3.10. First the
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1064 nm lattice, then the end caps, and finally the CO2 laser trap are raised up

before the green lattice is turned on. Notice that the end caps have to be turned on

before the CO2 laser trap is raised to a higher trap depth to avoid atom loss.

time

Figure 3.10: Loading atoms into a bichromatic lattice with higher Fermi energy
from the CO2 laser trap. We turn on the 1064 nm lattice, then the caps before the
CO2 laser trap goes up, and finally ramp up the 532 nm lattice.

time

Figure 3.11: Loading atoms into a repulsive 532 nm lattice. We first load into the
1064 nm dipole trap before raising the caps. Then we simultaneously turn off the
1064 nm dipole trap and finally turn on the 532 nm lattice.

When investigating the repulsive 532 nm lattice alone, the use of the end caps is

essential. The loading time scale is nominally the same. Atoms are first loaded into

the 1064 nm dipole trap before raising up the caps. Then the 1064 nm dipole trap is

turned off and the 532 nm lattice is turned on simultaneously as shown in Fig 3.11
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3.6 Lattice Depth Calibration

We use the diffraction of the atoms from the standing wave lattice to measure the

depth and the spacing of the periodic potentials. This technique, called Kapitza-

Dirac scattering [63], is commonly used when calibrating the depth of optical lattices.

It is very similar to the classical diffraction of light off a grating. However, in this

case, it is the atoms scatter off from the light grating formed by the spatially periodic

intensity of the light.

Scattering off the standing wave imprints discrete momentum transfer onto the

atoms. We obtain a molecular BEC as described below after forced evaporative

cooling using the CO2 laser dipole trap. By pulsing the optical lattice on the BEC, the

periodicity of the lattice potential and the lattice depth can be determined from the

distances between the diffraction orders and the relative number of atoms transferred

into different orders for different pulse times.

Consider a simplified condition, where the atomic motion during the interaction

time can be ignored (called the Raman-Nath approximation). For the above con-

dition to be valid, a short interaction time t much smaller than the inverse recoil

frequency (t ! 1{ ωrec) is required. Then the kinetic energy term in the Hamiltonian

can be neglected [64].

H “ V0 sin2 kz. (3.1)

Assume the initial state is a BEC of momentum q, i.e., Ψp0q “ eiqz. For a

time-independent Hamiltonian, the state at time t is

Ψptq “ e
´iHt

~ Ψp0q

“ e´
i
2~V0te

i
2~V0t cos 2kzΨp0q. (3.2)
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By using the identity

eiα cosβ
“

8
ÿ

n“´8

inJnpαqe
inβ, (3.3)

where Jnpαq is the n-th order Bessel function of the first kind, the state at time t

can be written as:

Ψptq “ e´
i
2~V0t

8
ÿ

n“´8

inJn

ˆ

V0t

2~

˙

eipq`2nkqx. (3.4)

The atoms are transferred from momentum state q to q`2nk with a time dependent

probability Pnptq “ J2
np

V0t
2~ q, where the argument of Jnp

V0t
2~ q is proportional to the

pulse area V0t
2~ . In order to observe sufficient population transfer to higher momentum

states with such short pulse duration, a high intensity lattice is needed.

To observe the diffraction pattern, we produce a molecular BEC by performing

a two-stage forced evaporative cooling of a two-component Fermi gas first at the

broad Feshbach resonance (832 G). Then we continue to cool while sweeping the

bias magnetic field to the BEC side, at around 720 G. A molecular BEC is shown in

Fig 3.12(a). By turning off the CO2 laser dipole trap, the cloud expands very quickly

in the vertical direction while it shrinks significantly along the axial direction of the

original dipole trap, which is also the lattice direction. The shrinkage arises from

the remaining magnetic confinement.3 The fast expansion in the vertical direction

due to the magnetic field curvature prevents us from efficiently transferring atoms

into different diffraction orders. Therefore, it is important to use the maximum

lattice depth that we have in order to see different scattering orders using short

pulse durations.

We pulse a 1 W 1064 nm optical lattice on the BEC when its axial size (along the

CO2 laser trap direction) shrinks to about 50 µm and radial size of 30 µm so that it

3 Refer to Fig 3.6 for definitions of directions.
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P (2ℏ𝑘)

Figure 3.12: Kapitza-Dirac scattering for various pulse duration of a 1 W 1064 nm
lattice. The pulse transfers atoms to various 2n~k states. Here k “ 2π

λ sinp θ
2
q

is the

effective wavevector of the 1064 nm light, θ is the lattice beams intersection angle,
and n “ 0,˘1,˘2... as labeled by dashed lines. (a) A molecular BEC at 720 G at
t “ 0. (b) Momentum distribution of the BEC for lattice pulse duration of 1.6 µs,
and (c) 2.8 µs. To measure the momentum distribution, we wait a time-of-flight of
T/4 “ 8 ms after the lattice pulse before taking the absorption image.
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Figure 3.13: Normalized atom number in the lowest three scattering orders plotted
as a function of pulse duration for a 1 W 1064 nm lattice. By fitting the time
dependent probability using Pnptq “ J2

np
V0t
2~ q for the lowest three orders where n “ 0

(blue), n “ 1 (red), and n “ 2 (green), the extracted lattice depth is 21.00 ˘
0.34E1064

R , 19.72˘ 0.20E1064
R , and 20.90˘ 0.70E1064

R respectively.

is small enough to see a uniform lattice, as shown in Fig 3.12(a). We vary the pulse

duration and wait for the band map time before taking the absorption image. The

band map time, as discussed in Sec 2.3 is a quarter of period T/4 “ 8 ms, allowing

different orders to reach x “ 2n~k
mω

, n P integers. The absorption image is taken with

the vertical camera, which integrates over the expanded direction. Here k “ 2π

λ sinp θ2q

is the effective wavevector of the 1064 nm beam. Pictures for two different pulse
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durations are presented in Fig 3.12(b) and (c). We find the atom number for each

scattering order and fit using eq 3.4 to extract the lattice depth V0, as shown in

Fig 3.13. For a 1 W 1064 nm lattice beam, the average depth for all three orders

is 20.6E1064
R

4 (E1064
R « 14.8 kHz denotes the recoil energy of the infrared lattice),

which is close to our estimate of 19E1064
R using the measured waist size of 100 µm

at focus.

P (4ℏ𝑘)

Figure 3.14: Kapitza-Dirac scattering for various pulse duration of 1 W 532 nm
lattice. The pulse transfers atoms to various 4n~k states. Here k “ 2π

λ sinp θ
2
q

is the

effective wavevector of the 1064 nm light, θ is the lattice beams intersection angle,
and n “ 0,˘1,˘2... as labeled by dashed lines. (a) A molecular BEC at 720 G at
t “ 0. (b) Momentum distribution of the BEC for lattice pulse duration of 1.6 µs.
To measure the momentum distribution, we wait a time-of-flight of T/4 “ 8 ms after
the lattice pulse before taking the absorption image.

4 For determination of E1064
R , the lattice spacing, in other words the intersection angle between

the two lattice beams, has to be measured with reasonable precision. This is presented in Sec 3.4
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Figure 3.15: Normalized atom number in the lowest two scattering orders plotted
as a function of pulse duration for a 1 W 532 nm lattice. By fitting the time dependent
probability using Pnptq “ J2

np
V0t
2~ q for the lowest two orders where n “ 0 (blue), and

n “ 1 (red), the extracted lattice depth is 9.41 ˘ 0.17E532
R , and 7.20 ˘ 0.09E532

R

respectively

We switch to pulsing a 1 W 532 nm lattice on the BEC, as shown in Fig 3.14.

Varying the pulse duration and waiting T/4 for atoms to scatter into x “ 4n~k
mω

, n P

integers, since 532 nm light has a wave vector twice of the 1064 nm light. A average

lattice depth of 8.45 E532
R

5 is found by extracting the V0 for each order, as shown in

Fig 3.15. However this result is less reliable since the recoil energy of the green lattice

is 4 times that of the infrared due to its short wavelength, thus the lattice depth is

not enough to sufficiently transfer the atoms for a pulse duration of τ ! 1{ωrec.

5 E532
R “ 4ˆ E1064

R
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3.7 Band Mapping

To calibrate the chemical potential of the system when atoms are loaded into the

lattice, it is important to measure the quasi-momentum distribution of the gas by

doing a band map. Band mapping is accomplished by ramping down the lattice

potential gradually on a timescale that is fast compared to the tunneling timescale in

the lowest band of the lattice, but adiabatic with respect to interband transitions [59,

60], such that the quasi-momentum distribution becomes the momentum distribution

q is determind from the momentum distribution p “ nG0 ` q. For band mapping

inside a harmonic trap, the spatial distribution at quarter period t “ T {4, recovers

the momentum distribution at time zero regardless of the initial position distribution,

as discussed in Sec 2.3.

When doing the band map, we first align the lattice beams to the center of a

shallow (0.5% full depth) CO2 laser trap at a magnetic field B “ 1200 G.6 We

load the atoms into the lattice after forced evaporative cooling of a mixture of the

lowest two hyperfine states of 6Li, denoted as |1y and |2y, in a CO2 dipole trap as

described in previous sections. After loading into the lattice, we sweep to 1200 G

where the two-body interaction is suppressed and remove state |2y with a resonant

optical imaging pulse. After removing state |2y, we are left only with noninteracting

state |1y which preserves momentum during expansion.

To transfer the quasi-momentum into momentum, for a 20ER 1064 nm lattice,

we exponentially lower the lattice for 800µs. We then wait T{4 “ 8 ms for the

cloud to expand along the lattice direction in the shallow harmonic confinement

of a 0.5% CO2 laser trap and the magnetic bowl arising from the bias magnetic

field. The result is shown in Fig 3.16(a). The edge of the cloud falls off abruptly at

6 The CO2 trap center slightly shifts for different magnetic field. It is therefore better to align to
the center of the final trap in which the atoms will expend.
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(a)

(b)

Figure 3.16: Band mapping of a s1 “ 20 λ1 “ 1064 nm lattice. (a) Absorption
image taken after ramping down the lattice for 800 µs and waiting T/4 “ 8 ms for
the cloud to expand along the lattice direction inside the harmonic trap. (b) The two
dimensional density distribution in (a) is integrated radially. Note that the images
are binned every 4 pixels in the horizontal direction.

x “ ˘ ~k
mω

with respect to the center of the cloud, where k “ 2π

λ sinp θ2q
is the 1064 nm

beam effective wave vector. The fall-off matches the first Brillouin zone boundary

at quasi-momentum q “ ˘~G0{2 where the reciprocal lattice vector G0 “ 2k. The

radially integrated profile, which shows better visibility of the shoulder at the zone
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boundary is presented in Fig 3.16(b).

W[p]

W[p]
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p/k p/k
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(d)
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Figure 3.17: Quasi-momentum and momentum distributions for various chemical
potentials µ and lattice depths s1. The red curves are theoretical prediction using
equations derived in Sec 2.3. (a) Quasi-momentum distribution and (b) momentum
distribution for µ “ 4ER and s1 “ 8. (c) Quasi-momentum distribution and (d)
momentum distribution for µ “ 2ER and s1 “ 5.5. (e) Quasi-momentum distribution
and (f) momentum distribution for µ “ 2ER and s1 “ 2.8.

To observe the effect of chemical potential on band maps, we vary the chemi-

cal potential by changing the atom number or the CO2 trap potential. As shown

in Fig 3.17, the left column shows the quasi-momentum distribution, which corre-
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Figure 3.18: Comparison between several band maps. Band map of (a) A 1064
nm lattice of s1 “ 10; (b) A 532 nm lattice of s2 “ 20; (c) A bichromatic lattice of
s1 “ 10, s2 “ 20, φ “ 0 and (d) s1 “ 10, s2 “ 20, φ “ π. Atom numbers are the same
for all cases. All absorption image taken after ramping down the lattice for 800 µs
and waiting T/4 “ 8 ms for the cloud to expand along the 4% CO2 axial direction.
The dashed lines denote the Brillouin zone center at 0 and zone boundaries at ˘~k
and ˘2~k. Here k “ 2π

λ sinp θ2q
is the effective 1064 nm lattice wave vector. Insets

show the lattice potential, and the radially integrated profiles are shown in the right
column.

sponds to adiabatic lowering of the lattice potential, while the right column shows

the momentum distribution corresponding to abrupt turning off of the lattice. The

red curves show theoretical prediction using equations derived in Sec 2.3. One sees

that less chemical potential results in a band map picture that is rounded on the

top.

We fix the atom number at N0 « 60, 000 for band mapping of various lattices,
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as shown in Fig 3.18. Fig 3.18(a) shows the band map of a 10ER 1064 nm lattice.

The atomic density distribution has a sharp shoulder at p “ ˘~k. A pedestal-like

profile extending towards p “ ˘2~k implies the chemical potential falls in between

the ground and first excited band. In Fig 3.18(b), the band map of a 10ER 532 nm

lattice has a sharp cutoff at p “ ˘2~k. The cutoff position corresponds to the 1st

Brillouin zone boundary of a wave vector 2k.

Fig 3.18(c) shows the band map of a bichromatic lattice of V pzq “ V1 cos2pkzq `

V2 cos2
`

2kz ` φ
2

˘

, where V1 ” ´s1ER ă 0 for the red-detuned 1064 nm lattice and

V2 ” s2ER ą 0 for the blue-detuned 532 nm lattice and s1, s2 ą 0 as defined in

Sec 2.2. For s1 “ 10, s2 “ 20, and relative phase φ “ 0, a superlattice with symmetric

double wells is formed. Recall Fig 2.4(b), when introducing the secondary lattice and

choosing relative phase to be φ “ 0, the superlattice becomes a periodic structure

of symmetric double wells, which brings the ground and first excited bands close to

degeneracy. Therefore, for a similar chemical potential to Fig 3.18(a), the lowest two

bands are occupied. As can be seen in Fig 3.18(c), the band map picture extends

to p “ ˘2~k as one would expect. Fig 3.18(d) is the band map of the bichromatic

lattice when φ “ π, where regions in between ~k and 2~k almost vanishes, since the

degeneracy between lowest two bands is lifted due to the phase, as we previously

showed in Fig 2.4(d).

3.8 Trap Frequency Measurement

For single beam optical traps or in deep optical lattices, the effective trap potential

for atoms is approximately harmonic. To characterize the harmonic potential, we

measure the oscillation frequencies of noninteracting atoms. When the trap depth

is modulated sinusoidally at twice the harmonic trap frequency, the atoms are para-
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metrically excited from the ground to second excited harmonic oscillator state7 and

its energy exponentially increases with time. As a consequence, one observes an

increase of the cloud size, or a loss of atoms, at the resonance frequency for each

direction.

(a) (b)

Figure 3.19: Lattice frequency measurement for a 1064 nm lattice of s1 “ 13 using
parametric resonance. When modulating the lattice depth at the resonant frequency,
the size of the cloud increases. We show here the growth in radial size. (a) Radial
resonance occurs around 600 Hz and 800 Hz. (b) Axial resonance has a peak at 140
kHz, a slow rise at 120 kHz and a sharp fall at 180 kHz.

To estimate the resonance frequencies, we consider a simple case as follows. By

retro-reflecting a cylindrically symmetric Gaussian beam of Rayleigh length zR and

waist w0, a standing wave potential has a fast periodic spatial modulation along the

beam propagating direction z,

V pr, zq “ ´
V cos2 kz

1` pz{zRq2
e
´ 2r2

w2
0 . (3.5)

We can write V in units of ER, i.e. V ” sER. Omitting the relatively slowly-varying

7 Transitions between ground and first excited state in a harmonic potential induced by modulating
the trap depth are not allowed due to the symmetry of the potential V , thus xΨ0|V |Ψ1y “ 0.
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z-dependence of z2{z2
R, one can obtain the expression

V pr, zq “ ´sERp1´ k
2z2
` Opz4

qq

ˆ

1´
2r2

w2
0

˙

«
1

2
mω2

zz
2
`

1

2
mω2

rr
2. (3.6)

Thus the axial and the radial harmonic frequencies are

ωz “
2
?
sER
~

, ωr ”
?
ωzωy “

d

4sER
mw2

0

. (3.7)

For a 1064 nm lattice of depth s “ 13 and waist w0=100 µm, the estimated harmonic

trap frequencies are ωr “ 2π ˚ 360 Hz, ωz “ 2π ˚ 110 kHz. Fig 3.19(a) shows two

radial parametric frequencies around 600 Hz and 800 Hz, due to anisotropy in the

two radial directions. The peak positions are close to twice the estimated harmonic

trap radial frequency using eq. 3.7, i.e. 2 ˚ 360 “ 720 Hz.

(a) (b)

Figure 3.20: Ground to second excited band transition frequency and transition
matrix element squared of a s1 “ 13 lattice. (a) The transition frequency has a
range of f P r140, 185s kHz. 140 kHz corresponds to a |1y-|3y transition frequency at
q “ 0. 185 kHz corresponds to a |1y-|3y transition frequency at q “ k. Note that q is
conserved for the transition. (b) The quasi-momentum dependent transition matrix
element squared. Blue: 1Ñ2, Red: 1Ñ3, Green: 1Ñ4, Purple: 1Ñ5.

However, for a moderate lattice depth, the harmonic well description is not ap-

propriate. We solve for the band structure to figure out the transition frequencies
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required for transitions from ground to second excited band denoted as 1 Ñ 3. For a

lattice depth of s “ 13, the 1 Ñ 3 transition frequency according to a band calcula-

tion has a range of f P r140, 185s kHz, as shown in Fig 3.20(a). 140 kHz corresponds

to a |1y-|3y transition frequency at q “ 0. 185 kHz corresponds to a |1y-|3y transi-

tion frequency at q “ k. The quasi-momentum dependent transition matrix element

squared is shown in Fig 3.20(b). We compare this result to a parametric measure-

ment spectrum shown in Fig 3.19(b). When modulating at the 1 Ñ 3 frequency, the

atoms are transferred to the second excited band which has a larger tunneling rate,

therefore the cloud size increases. We show the radial size measurement has a peak

at a modulating frequency of 140 kHz and a sharp fall at 180 kHz. The sharp cutoff

corresponds to the band gap, and the range agrees reasonably well with prediction.

The slow rise from 120 kHz is due to the radial variation of the lattice intensity.

P (ℏ𝑘)

Figure 3.21: Band map for a sinusoidally modulated 1064 nm lattice of s1 “ 20,
with modulation amplitude of 13% for 1.3 ms at 110 kHz for 1 Ñ 3 transition.

We find that extracting the lattice depth using Kapitza-Dirac scattering is more
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reliable than parametric resonance, since there’s one fit parameter, i.e., the lattice

depth, for all scattering orders at different times, while modulation spectroscopy

provides a range of frequencies, which requires more interpretation.

We also show in Fig 3.21 the band map after sinusoidally modulating a s1 “ 20

1064 nm lattice by 13% for 1.3 ms at 110 kHz for 1 Ñ 3 transition. After lattice

modulation, we do a band map by ramping down the lattice adiabatically for 800 µs,

and allowing the gas to expand in the harmonic trap for a time-of-flight of T{4 “ 8

ms before taking the absorption image. The quasi-momentum is transferred into

the measured momentum distribution. Modulating at 110 kHz transfers atoms from

ground to second excited band, therefore atomic density distribution shows up in

|p| ą 4~k regions in the band map.

3.9 Calibrating the Relative Phase of the Bichromatic Lattice

We used the Soleil-Babinet phase Compensator to control the relative phase between

the two lattices to construct periodic double well structures of various symmetries.

The Babinet compensator is made with crystal quartz and is a continuously variable

phase retarder that operates over a wide range of wavelength. It consists of two

birefringent wedges, a fixed one and another one with adjustable position mounted

on a translational stage. By moving the position of one wedge to change the optical

path length through the crystal, one can continuously vary the phase retardation.

The 1064 nm and 532 nm lattice beams are orthogonally polarized and aligned

to the fast and slow axis of the birefringent crystal to maximize the relative phase

retardation between the two. To calibrate the relative phase difference after passing

through the Babinet compensator, we combine the two color beams and intersect

them at a small angle (θ « 2˝) to interfere. We image the interference pattern

directly with a camera.

As shown in Fig 3.22, the top half is the interference pattern of the 1064 nm
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(a) (b)

Figure 3.22: The top half is the interference pattern of the infrared beam, and the
lower is that of the green. By changing the Babinet micrometer position, the relative
pattern shifts. (a) Micrometer at 0, and (b) micrometer at 1.75 mm.

beam, and the lower half is for the 532 nm beam. By turning the micrometer to

adjust the wedge position, the interference patterns shift with respect to each other.

The relative interference patterns repeat after moving the micrometer by 3.5 mm,

which corresponds to a relative phase change of 2π.

Micrometer position (𝜇𝑚)

Figure 3.23: Phase dependent loading for a bichromatic lattice of s1 “ 20, s2 “ 10
when varying the relative phase φ. When φ “ 0, which corresponds to the zero
in the horizontal axis, presumably we have a symmetric double well superlattice
configuration.
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When atoms are loaded into the bichromatic optical lattice, we can determine

the relative phase indirectly by measuring the phase dependent loading. When the

node of the green lattice is aligned to the node of the infrared, naively speaking

one would expect to observe minimum atom loading because the attractive force is

maximally canceled. To observe atom loss with better sensitivity, we choose to load

the atoms into a bichromatic lattice of s1 “ 20, s2 “ 10 (ER is the recoil energy of

the 1064 nm lattice.) and a relatively weak radial confinement of CO2 laser trap to

record the phase dependent atom number. We use a CO2 laser trap which is 0.25%

of the maximum trap depth. As can be seen from Fig 3.23, the atom number is

not sensitive within a ˘50 µm (dφ “ 2π{35) range where the atom number reaches

its minimum. We normally place the Babinet compensator within this range and

define the relative phase to be 0, where each site of the superlattice is presumably

a symmetric double well, where the 1064 nm attractive and the 532 nm repulsive

lattice potentials are of opposite sign.
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4

Fermi Gases from 2D to Quasi-2D

We present in this thesis work the first systematic study of both pairing and ther-

modynamics of ultracold Fermi gases continuously varied from two dimensional (2D)

to quasi-2D. A system is 2D if it is free to move in two dimensions x and y while

tightly confined in the third direction z, such that only the ground state in the z

direction is occupied. Assuming harmonic confinement, a gas is 2D if only the z

harmonic oscillator ground state, whose energy is 1
2
hνz, is occupied. Conversely, the

system is quasi-2D if higher states in the tightly confined direction are also occupied.

For a gas loaded in a deep one dimensional optical lattice, when the radial Fermi

energy EF is small compared to hνz, the energy difference between two states in

the tight confinement direction, the gas is 2D, as shown in Fig 4.1. In contrast, the

gas is quasi-2D when EF and hνz are comparable, such that higher axial states are

occupied.

Quasi-two-dimensional (quasi-2D) geometries play important roles in high tem-

perature superconductors [65], layered organic superconductors [66], and semiconduc-

tor interfaces [67]. In high-transition temperature copper oxide and organic super-

conductors, electrons are confined in a quasi-two-dimensional configuration, creating
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complex, strongly interacting many-body systems, for which the phase diagrams are

not well understood [68]. Enhancement of the critical temperature Tc for the quasi-

2D regime, as compared to true 2D regime, has been predicted for thin films in

parallel magnetic fields [69] and for quasi-2D Fermi gases containing atoms in ex-

cited states of the tightly confined direction [29], where Tc may exceed the 3D value.

Ultracold atomic Fermi gases in 2D and quasi-2D geometries provide model systems,

which have been the subject of numerous predictions [5, 22, 23, 24, 29, 30, 70, 71,

72, 73, 74, 75, 76, 77] and experiments [3, 4, 6, 7, 8, 9, 10, 11, 12, 78, 79, 80, 81].

hνz

μꓕ0

μꓕ1

(a) (b)

μꓕ0

Figure 4.1: Defining the dimensionality of the gas. A deep optical lattice is gen-
erated along the z-direction by intersecting two λ “ 1064 nm beams. (a) When the
radial chemical potential µK is small compared to hνz, the gas is 2D. (b) The gas is
quasi-2D when the radial chemical potential is comparable to hνz, when higher axial
states are occupied.

In 2D systems, the dimer binding energy Eb ě 0 sets the natural scale of length

for scattering interactions [20], but a many-body treatment is required for EF ą Eb,

as the inter-atom spacing is then smaller than the dimer size [5]. 2D-BCS mean

field theory (MFT) [5] provides an elegant treatment of this problem, but MFT is

expected to fail in 2D systems, as noted by Randeria and Taylor [21] and shown
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in many recent predictions [22, 23, 24, 25, 26, 27, 28]. For quasi-2D systems, the

effect of the third dimension on the equation of state and pairing energies is not yet

understood [29, 30].

Radio frequency spectra obtained with EF {hνz ăă 1, in the 2D regime [3, 4],

reveal that the absorption threshold is close to Eb, a 2D-BCS (Bardeen-Cooper-

Schrieffer) mean field prediction [5] that one would not have expected to be quan-

titatively valid in 2D [21]. Although one might expect similar 2D-behavior for

a quasi-2D gas with EF {hνz » 1, the measured spectra are in strong disagree-

ment with BCS mean field theory [6], as are the measured thermodynamic prop-

erties [7, 8, 9, 10, 11, 12], which require a beyond mean field treatment. However,

prior to this thesis work there has been no experimental study of the thermodynamic

properties in the 2D regime. We study a two-component 6Li Fermi gas in a new trap

geometry that can be smoothly tuned from 2D to quasi-2D. The dimensionality of

the gas within each single layer is tuned from 2D to quasi-2D by continuously by

increasing the radial Fermi energy using the adjustable radial confinement of a CO2

laser potential. We are able to measure both the radio frequency spectra and radial

cloud profiles under identical conditions for each regime. For the quasi-2D gas, we

find that the spectra are inconsistent with 2D-BCS theory. For the 2D gas, we find

that the spectra can be fit by 2D-BCS mean field theory, consistent with previous

work[3, 13]. In contrast to the spectra, we find that the radii for 2D clouds are

much smaller than those predicted by 2D-BCS mean field theory, which yields ideal

gas density profiles[14]. Our results show that there is no transition between 2D

and quasi-2D systems and that beyond mean field descriptions are required in both

regimes, consistent with predictions.
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4.1 Experimental Realization of Dimensional
Crossover

For this experiment, we use only the fundamental lattice of wavelength λ1 “ 1064

nm from our bichromatic optical lattice setup. Two 1064 nm beams intersecting

at an angle of θ “ 91˝, create an optical lattice with lattice spacing of 0.746 µm,

which tightly confine atoms along the z direction. This lattice is superposed on a

CO2 laser dipole trap, as shown in Fig 2.2(a), which provides radial confinement.

By changing the CO2 laser trap depth, one has control over the radial harmonic

oscillator frequency ωK.

The interaction strength of a balanced (50-50) mixture of atoms in the two lowest

hyperfine components, denoted |1y and |2y, of 6Li is tuned using the broad Feshbach

resonance at 832.2 G [18, 19]. The radial trap frequency ωK and the total number

of atoms in one site N« 2000 determines the ideal 2D gas radial Fermi energy,

EF “ ~ωK
?
N . The interaction strength is characterized by the parameter EF {Eb12,

where Eb12 is the binding energy of a 1-2 dimer inside the lattice. We change the

dimensionality of each site by tuning the ratio of EF to the harmonic oscillator

energy level spacing hνz ” 2
?
sER in the tightly confined z-direction, with s being

the lattice depth in units of ER. For s “ 15, hνz is hˆ116 kHz. As shown in Fig 4.1,

at zero temperature, the gas is 2D for EF {hνz ! 1, since all atoms are in the ground

axial state of the lattice. For EF {hνz « 1, the gas is quasi-2D, since higher axial

states are populated.

4.2 RF Spectroscopy from 2D to Quasi-2D

Radio frequency spectroscopy is a very powerful tool to study the pairing energy.

With this new trap geometry that is smoothly tunable from 2D to quasi-2D, we are

able to measure rf spectra for each regime. We begin by calculating the transition
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spectrum using Fermi’s golden rule and compare it to the measured spectrum.

4.2.1 Calculating the RF Transition Spectrum

The Hamiltonian for the 6Li ground state hyperfine interactions in a magnetic field

is

H “
ahf
~2

S ¨ I´
µ0

~
pgJS` gIIq ¨B. (4.1)

The first term comes from the hyperfine interaction and the second term comes from

magnetic field Zeeman shift ´m ¨ B. The magnetic moment is m “
µ0
~ pgJS ` gIIq

contains both electric-spin and nuclear magnetic dipole moments, which interact

with the bias magnetic field B “ Bêz.

For 6Li which has S=1{2 and I=1, there are six hyperfine states, as shown in

Fig 4.2. The original degenerate states for both F “ 3
2

(blue lines) and F “ 1
2

(red

lines) split into six different states as the magnetic field increases. Here we only list

the lowest 3 in increasing order of energy from |1y to |3y. We normally trap and work

with the lowest two states |1y and |2y in our experiments.

|1y ” |pS “
1

2
, I “ 1q, F “

1

2
,mF “

1

2
y

“ ´ sin θ`|mS “
1

2
,mI “ 0y ` cos θ`|mS “ ´

1

2
,mI “ 1y

|2y ” |pS “
1

2
, I “ 1q, F “

1

2
,mF “ ´

1

2
y

“ ´ sin θ´|mS “
1

2
,mI “ ´1y ` cos θ´|mS “ ´

1

2
,mI “ 0y

|3y ” |pS “
1

2
, I “ 1q, F “

3

2
,mF “ ´

3

2
y

“ |mS “ ´
1

2
,mI “ ´1y. (4.2)

In eq. 4.2, sin θ˘ “ r1`pZ˘`R˘q
2{2s´1{2, cos2 θ˘ “ 1´sin2 θ˘, and Z˘ “

µ0B
ahf
p´gJ`
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gIq ˘
1
2
, R˘ “

a

2` pZ˘q2. For large B, R˘ Ñ 8 and Z˘ Ñ 8, sin θ˘ terms vanish

and cos θ˘ Ñ 1.

E/
a h

f

Figure 4.2: Hyperfine energies of 6Li versus magnetic fields. E1 lowest to E6

highest.

The magnetic dipole interaction for a radio frequency (rf) pulse is V ptq “ ´m ¨

Brf ptq, where Brf ptq “ êxB
0
rf cosωt and m is the magnetic dipole moment. It is

important to note that the rf field must be perpendicular to the quantization axis

of the states (in this case the B-field lies along the z-axis while rf B-field is in the x

direction) in order to make transitions that change the magnetic quantum number m.

Since |gI | is very small compared to |gJ |, we can ignore the nuclear magnetic moment

term and write mx » gJµ0Sx{~ » ´2µ0
S``S´

2~ . One sees that rf transitions can not

occur between states |1y and |3y, since |∆m| “ 2. For transitions between states |1y

and |2y or between states |2y and |3y, since |∆m| “ 1, transitions are allowed. The

Rabi frequency Ωkn “
1
~xk|mx|nyB

0
rf is proportional to both the rf magnetic field
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amplitude B0
rf , and the magnetic dipole matrix element xk|mx|ny.

In our experiment, we start with a mixture of states |1y and |2y. We drive an rf

transition from |2y to |3y and monitor the remaining number of atoms in state |2y.

The initial and final state two-atom wavefunctions are

| iy “
1
?

2
p|1ya|2yb ´ |1yb|2yaq|Iy,

|fy “
1
?

2
p|1ya|3yb ´ |1yb|3yaq|F y. (4.3)

Here, a and b denote the two atoms, |1y, |2y, |3y, are hyperfine states. The relative

motion states(dimer or scattering) that are denoted as |Iy and |F y are symmetric

under exchange of atoms, where a and b denotes different atoms. To anti-symmetrize

the whole wavefunction, we make the atom pair hyperfine state anti-symmetric.

From Fermi’s golden rule, the radio frequency induced transition rate out of the

initial state i to all possible final states f is

Ripωrf q “
2π

~
ÿ

f

|Vfi|
2δpEf ´ Ei ´ ~ωrf q. (4.4)

The transition matrix element |Vfi| is

Vfi “
1

2
px1|ax3|b ´ x1|bx3|aqmx p|1ya|2yb ´ |1yb|2yaqB

0
rfxF |Iy

“ ~Ω32xF |Iy. (4.5)

Ignoring the many-body physics and treating the two-body problem interacting

via s-wave scattering, we can solve for the atom-pair(dimer) binding energy inside a

harmonic potential using a self-consistent integral equation [82],

lz
a
“

ż 8

0

du
?

4πu3

«

1´
ź

j

ˆ

2βju

1´ e´2βju

˙1{2

e´εbu

ff

. (4.6)
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Here Eb “ εb~ωz is the pair binding energy, βj “
ωj
ωz

is the ratio between harmonic

trap frequencies, lz “
a

~{pmωzq is the harmonic oscillator length scale, and a “

apBq is the s-wave scattering length. A Green’s function approach is used obtain

eq. 4.6 for the binding energies and eigenfunctions for bound and scattering states.

See Sec 5.1 for detailed derivation.

The solution of the relative motion part wavefunction for an initial |1y-|2y paired

state is

|Iy “ φ0pzqψ12pρq “
κ12
?
π
φ0pzqK0 pκ12ρq .

The rf pulse can drive a |2y Ñ |3y transition and leads to a final |1y-|3y paired state,

or a |1y-|3y scattering state. The corresponding wavefunctions are [82]

xρ|F ypaired “
κ13
?
π
φ0pzqK0 pκ13ρq , (4.7)

xρ|F yscatter “ φ0pzq
1
?
A

»

–J0pk13K ρq ´
πi

πi` ln
´

E13
b

E13
f

¯H
p1q
0 pk13K ρq

fi

fl . (4.8)

Here φ0pzq is the ground state axial harmonic oscillator wave function

φ0pzq “
1

p2πl2zq
1{4
e´p

z
2lz
q2 , (4.9)

, K0 is a modified Bessel function with κij “
?
εb ij{lz, the |1y-|3y binding energy

E13
b “ εb 13~ωz, the transverse kinetic energy E13

f “
~2k213K
m

, and A is the transverse

area for a box-normalized plane wave.

Using Fermi’s golden rule, eq. 4.4 and 4.5, we obtain the normalized transition

spectrum for a |1y-|2y bound state to a |1y-|3y bound state,

R12bÑ13bpνq “ π2Ω2
fi

q2

4 sinh2
`

q
2

˘ δ

ˆ

ν ´
E12
b ´ E

13
b

h

˙

, (4.10)
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where q “ lnpE12
b {E

13
b q. The normalized transition spectrum for a |1y-|2y bound state

to a |1y-|3y scattering state has the following form [6]

R12bÑ13f pνq “ π2Ω2
fi

E12
b

hν2

q2Θpν ´ E12
b {hq

”

q ´ ln
´

hν
E12
b
´ 1

¯ı2

` π2

. (4.11)

4.2.2 RF Spectra for 2D and Quasi-2D Fermi Gases

To probe the pairing energy, we probe the transition from the atomic hyperfine state

|2y to a higher lying, initially empty hyperfine state |3y. We record the number of

atoms remaining in |2y as a function of the excitation frequency relative to the bare

atom hyperfine transition frequency, ν0
32 i.e., ∆νRF ” νRF´ν

0
32. We measure ν0

32 using

a high temperature, low density |1y-|2y mixture, which agrees with measurements for

a noninteracting cloud containing atoms only in |2y. We then observe the rf spectra in

low temperature mixtures, which exhibit a shifted pairing peak, as shown in Fig. 4.3

for B “ 1005 G and in Fig. 4.4 for B “ 834 G.

We consider first the measurements in the 2D regime, the upper spectra in Fig. 4.3

and Fig. 4.4. In our experiments, where EF ě Eb12, we expect many-body physics

to be important, as the interparticle spacing is then comparable to or smaller than

the dimer size. For the 2D regime, we can try to apply 2D-BCS theory for a true

2D system [72]. In this case, the 2D-BCS prediction for a |2y Ñ |3y transition with

a noninteracting final state (Eb13 ăă Eb12) is h∆νRF “ Eb12, precisely the dimer

pairing energy, as noted previously [4, 6]. However, in our experiments Eb13 is not

negligible, so we determine the 2D spectrum including the lnpEb13{Eb12q-dependence

arising from final state interactions according to eq. 4.10 and eq. 4.11 [6, 83]. For

our case, the bound to bound transition dominates.

For a lattice of depth only 15 ER, the energy levels are not equally spaced by

hνz, as for a harmonic oscillator. Therefore, instead of using eq. 4.6 to calculate

the dimer binding energies inside a harmonic well, we determine the dimer binding
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Figure 4.3: Radio-frequency spectra at B “ 1005 G with νz “ 116 kHz. Top:
2D regime with EF {hνz “ 0.16, Eb12{hνz “ 0.044, EF {Eb12 “ 3.57, and Eb13{hνz “
0.016. Bottom: Quasi-2D regime with EF {hνz “ 0.75, Eb12{hνz “ 0.044, EF {Eb12 “

17.1, and Eb13{hνz “ 0.016. The fraction of atoms remaining in hyperfine state 2 is
measured as a function of radio-frequency relative to the bare atom 2 Ñ 3 resonance
frequency. The solid-red (dashed-green) curves denote the dimer (polaron) prediction
with no free parameters (top) and fitted width w “ 4 kHz (bottom)

.
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Figure 4.4: Radio-frequency spectra at B “ 834 G with νz “ 116 kHz. Top: 2D
regime with EF {hνz “ 0.125, Eb12{hνz “ 0.20, EF {Eb12 “ 0.62, and Eb13{hνz “
0.032. Bottom: Quasi-2D regime with EF {hνz “ 0.67, Eb12{hνz “ 0.20, EF {Eb12 “

3.32, and Eb13{hνz “ 0.032. The fraction of atoms remaining in hyperfine state 2 is
measured as a function of radio-frequency relative to the bare atom 2 Ñ 3 resonance
frequency. The solid-red (dashed-green) curves denote the dimer (polaron) prediction
with no free parameters (top) and fitted width w “ 12 kHz (bottom).
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energies in the finite-depth optical lattice using the technique we present in detail

in Sec 5.2 [84]. The sum of the calculated 2D spectra determined by eq. 4.10 and

eq. 4.11 are convolved with a Lorentzian of width w (FWHM). We believe that the

linewidth w arises from the short lifetime of the excited state |3y in the |1y ´ |2y

mixture, as we were not limited by spectroscopic resolution with our pulse duration

of 30 ms. For the 2D data, we measure w “ 1.3 kHz at 1005 G and w “ 4.3 kHz

at 834 G, using the observable atomic |2y Ñ |3y resonance. For the quasi-2D data,

the corresponding widths of 4 kHz and 12 kHz are found by fitting, as we could not

measure the spectrum of the atomic resonance contribution. For the upper (2D)

spectra in Fig 4.3 and in Fig 4.4, where EF {hνz “ 0.16 and 0.13, respectively, we

find that dimer spectra, as predicted by 2D-BCS theory, are in very good agreement

with the data, as shown by the calculated red curves.

Now we examine the measurements in the quasi-2D regime, shown as the lower

spectra in Fig 4.3 and Fig 4.4, where EF {hνz ě 0.67. Here, we find that 2D-BCS

theory does not fit the data. Recently, zero temperature 2D-BCS theory has been

extended to include higher axial states [30], which one expects would contribute

in the quasi-2D regime. The predictions show that in the quasi-2D regime, the

pairing resonances should be significantly shifted upward in frequency as observed,

but quantitative agreement is not obtained [85].

We also consider a 2D-Fermi-polaron model, where spin-down atoms act as im-

purities dressed by particle-hole clouds in a sea of spin-up atoms. We extend this

picture by assuming that the polarons are fermionic and weakly interacting, so that

the model is applicable even for a 50-50 mixture of both spin states. This heuristic

model predicts several features of our previous data in the quasi-2D regime [6, 8]

and is consistent with more detailed treatments based on the Bethe-Goldstone equa-

tion [86, 87], which describes two-body interactions in a many-body system.

In the spectra, the model predicts a resonance for h∆νRF “ Ep13 ´ Ep12, where
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the energy of each state is given by

Ep “ ypqqεF . (4.12)

Here, εF “ π~2 n{m is the local Fermi energy, m is the atom mass, and n is the total

density for the 50-50 mixture. An approximate form for the dimensionless factor

ypqq is [86, 87],

ypqq “
´2

lnp1` 2 qq
, (4.13)

where q ” εF {Eb. This analytic result interpolates between the molecular regime

(neglecting the molecular mean field) at magnetic fields well below the Feshbach

resonance and agrees with the Fermi polaron approximation [6] and recent QMC

predictions [88] for εF {Eb ą 3.

The dashed-green curves in the spectra of Fig 4.3 and Fig 4.4 show the predictions

using eq. 4.13, with

Ip∆νq9

ż

2πρ dρ npρq

1` p2{wq2 r∆ν ´ pEp13 ´ Ep12q{hs
2 , (4.14)

where the 2D-density npρq is determined from fits to the measured column density

profiles. As the density decreases, the local Fermi energy decreases from its maximum

value, producing a downward sweeping broad spectrum, consistent with the data. We

see that the 2D-polaron spectrum based on eq. 4.13 predicts resonances in reasonable

agreement with the quasi-2D data.

4.3 Cloud Radii for 2D and Quasi-2D Fermi Gases

The cloud radii can be a measure of the equation of state, which determines the

density profile of the trapped gas. In previous studies of quasi-2D spin-imbalanced

and spin-balanced clouds [8], we have measured both the cloud radii and the pressure

for EF {hνz “ 1.5. There, we find that the 2D-polaron model gives a reasonable fit
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for the measured radii and pressure, while 2D-BCS theory for a balanced gas predicts

an ideal gas pressure and ideal gas cloud profiles [8, 72], in strong disagreement with

the measurements.

Fischer and Parish [29] have extended finite temperature 2D-BCS theory to in-

clude higher axial states, which are expected to contribute to the thermodynamics in

the quasi-2D regime. In this case, the predicted pressure decreases below the ideal gas

pressure with increasing EF {hνz, but it is well above the 2D-polaron prediction [8],

which agrees with measurements in the quasi-2D regime [8, 12].

With this new trap geometry that is smoothly tunable from 2D to quasi-2D, we

are able to measure radial cloud profile for each regime.

4.3.1 Phase-Contrast Imaging

Due to the high density of the 2D atomic samples, we choose to use phase-contrast

imaging technique instead of absorption imaging. With this technique, we can image

using a detuned beam and avoid accelerating atoms when imaging with a large

intensity resonant probe beam, which would be needed to penetrate the high density

cloud.

Image plane
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Figure 4.5: Setup for phase-contrast imaging. (a) The incident field is phase shifted
by the phase plate, whereas the scattered field is not. (b) Front view of the phase
plate. A dot of 0.5 mm diameter is coated in the center of a thin window for λ{4
phase retardation.
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In phase-contrast imaging, we place a phase plate at the focal plane of the imaging

lens, as shown in Fig 4.5. This phase plate has a dot of 0.5 mm diameter coated

in the center of a thin window. The collimated incident field focuses tightly in the

focal plane and is intercepted by the phase plate which retards the incident field by

λ{4. The scattered field is uncollimated, thus large in the Fourier plane, and is not

affected by the phase plate. The two beams interfere at the image plane, which in

turn is imaged onto a ccd array.

As the probe beam pass through the atoms, it gets attenuated by the transition

amplitude t and gains an extra phase shift eiφ. We can write the electric field strength

in the object plane immediately after the atomic cloud as [89, 90],

Epx, yq “ tE0px, yqe
iφ. (4.15)

Both the attenuation coefficient t and the phase shift φ depend on the off-resonance

optical density D̃ “ ñσ0{p1` δ
2q in the following form,

t “ e´
D̃
2 ;φ “ ´δ

D̃

2
. (4.16)

Here the column density ñ “
ş

nprqdz, is the three dimensional density distribution

nprq integrated over the probe beam propagation direction z, δ “ 2pw´w0q

Γ
is the

detunning in units of half linewidth, and σ0 is the resonant optical cross-section.

The D2 line of 6Li has a linewidth of Γ “ 2πˆ5.87 MHz. In the following discussion,

for simplicity, we approximate tÑ 1 for large detuning δ.

The electric field in the object plane can be decomposed into two parts, the

incident field E0px, yq, and the scattered field E0px, yqpte
iφ ´ 1q. For a 2f-to-2f

imaging setup, the scattered field is not affected by the phase plate, so Escat “

´E0p´x,´yqpte
iφ´ 1q expr´iqpx

2`y2q
2f

s at the image plane1. Here q is the propagation

wave vector and f is the focal length of lens. We assume that the phase plate only

1 We use the paraxial propagator gpx´ x1; y ´ y1; dq “ ´iq
2πd expr iq2d ppx´ x

1q2 ` py ´ y1q2qs
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causes a phase shift of α “ π{2, without attenuating the incident field, so t » 1. The

incident field reaching the image plane is Einc “ ´e
iαE0p´x,´yq expr´iqpx

2`y2q
2f

s.

At the image plane, for the 4f configuration the intensity distribution Ipx, yq is

proportional to the square of the total field with a coefficient C “ cε0
2

, where c is the

speed of light, ε0 is the permittivity,

Ipx, yq “ C|Escat ` Einc|
2

“ C|E0|
2
|eiα ` peiφ ´ 1q|2

“ C|E0|
2
r3´ 2

?
2 cospφ`

π

4
qs. (4.17)

The corresponding reference image when no cloud is present, is

I0px, yq “ C|E0|
2
r3´ 2

?
2 cosp

π

4
qs. (4.18)

Normalizing the intensity distribution, we obtain,

Ipx, yq ´ I0px, yq

I0px, yq
“ 2r1´

?
2 cospφ`

π

4
qs. (4.19)

In reality, we do not have to take the limit of t Ñ 1, thus eq. 4.19 is a function

of t and φ as defined in eq. 4.16. We numerically extract the density by properly

choosing the detuning so that cospφ` π
4
q for local density n is single valued. Taking

tÑ 1 results in a 10% error. For our measurements, we use a detuning of about 13

linewidths.

4.3.2 Measured Cloud Radii for 2D and Quasi-2D Fermi Gases

Our measured spectra for the 2D regime appear to agree with 2D-BCS mean field

theory, which predicts dimer spectra, consistent with the 2D spectra obtained in

Refs. [3, 4]. To examine the 2D-BCS predictions further, we use the in-situ phase-

contrast method to image the dense clouds in the 2D regime with EF {hνz ď 0.18.
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From the atom number and peak column density [8], we obtain the cloud radii shown

in Fig 4.6.

Figure 4.6: Cloud radii versus EF {Eb, where EF is the radial Fermi energy for
an ideal gas, RTF is the Thomas-Fermi radius, and Eb12 is the 2D dimer binding
energy of a 1 ´ 2 atom pair. The blue band shows 2D-polaron model prediction
at T “ 0 (lower side) and T {TF “ 0.2 (upper side). The solid line at R{RTF “ 1
is the 2D-BCS prediction. The dashed curve is the Fermi liquid limit, R{RTF »

1 ´ 0.5{ lnp2EF {Eb12q. Note that the statistical error bars are comparable to the
point size.

The 1D column density in a harmonic trap can be well fit by a function

n1Dpxq “ n1Dp0q

ˆ

1´
x2

R2

˙γ

ΘrR ´ |x|s, (4.20)

which is weakly dependent on a power law exponent γ. Here Θ is a Heaviside function

that has a cutoff at x “ R. The peak column density n1Dp0q, and the exponent n

are determined from the fit. To find the peak column density we fit the data with a
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parabola within 70% of the apparent Thomas-Fermi radius in order to avoid fitting

the wings where relatively high noise is located. Normalizing the x-integral of the

1-D density distribution in eq. 4.20 to number of atoms per spin state N1, determines

the cloud radius

R “
N1

n1Dp0q
?
π

Γpγ ` 3{2q

Γpγ ` 1q
. (4.21)

R is determined from the measured atom number per spin state N1 and peak column

density n1Dp0q.

Over the measured range of EF {Eb, we see that the cloud radii are well below

the ideal gas limit R{RTF “ 1 as shown in Fig. 4.6, where RTF “
a

2EF {mω2
K is

the Thomas-Fermi radius. In contrast, 2D-BCS theory for a true 2D system predicts

ideal gas Thomas-Fermi profiles [8, 72], R{RTF “ 1, in strong disagreement with the

data.

Now we consider the 2D-polaron model prediction, shown as the the lower side

of the blue band in Fig. 4.6. The cloud radii are determined from the local chemical

potential µ “ Bf{Bn, which is determined from the approximate free energy density

for the balanced gas [8, 87],

f “
n

2
εF r1` ypqqs. (4.22)

For the spin-balanced |1y-|2y mixture, using eq. 4.13, we obtain the cloud radii in

units of the ideal gas Thomas-Fermi radius [8],

R

RTF

“

c

µ̃p0q `
Eb12

2EF
, (4.23)

where µ̃p0q is the chemical potential at the center of the cloud in units of EF , which

is self-consistently determined [91]. Details are provided in Appendix A.

For large values of η ” lnp
a

2EF {Eb12q » lnpkFa2Dq, expansion of eq. 4.23 to

lowest order in 1{η leads to R{RTF » 1 ´ 1{p4ηq, the density profile of a Fermi
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liquid [92] in a harmonic trap. Here, kFa is the Fermi momentum and a2D is the 2D

scattering length. We plot the Fermi liquid result as the dashed curve in Fig 4.6.

For these experiments, we are not able to cool the cloud as efficiently as in our

previous studies in a CO2 laser lattice, where we obtained T {TF ă 0.2. We estimate

the effect of finite temperature by using ideal gas temperature scaling for the zero

temperature radii. For T {TF “ 0.2, we obtain the upper side of the blue band in

Fig. 4.6.

4.4 Conclusion

We have smoothly tuned the dimensionality of pancake-shaped 6Li Fermi gas clouds

from quasi-2D to 2D to measure radio-frequency spectra and cloud profiles in both

regimes. In the quasi-2D case, where EF {hνz » 1, with EF the Fermi energy and hνz

the harmonic oscillator energy in the tightly confined direction, we confirm that the

radio-frequency spectra strongly disagree with 2D-mean field theory. Then we tune

to the 2D regime, EF ăă hνz, where the measured radio frequency spectra are in

very good agreement with 2D-mean field theory. Nevertheless, the measured cloud

profiles also strongly disagree with 2D-mean field theory, confirming predictions that

a beyond mean field approach is required throughout the 2D to quasi-2D crossover.
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5

Pairing in a Bichromatic Lattice

In two dimensional quantum gases, atom-pairs can be formed on both the molecular

BEC side of the Feshbach resonance as in three dimensions, and also in the BCS

region. On the BCS side, stable pairs are caused by the confinement of the two

dimensional geometry[5, 20], and are therefore called confinement-induced dimers.

In this chapter, I will describe how to calculate the dimer binding energies first for a

harmonically trapped gas. Next I will move on to an optical standing-wave lattice,

and I will discuss the pairing energies for the bilayer gas in our bichromatic optical

lattice. Finally I will describe our initial measurements of radio-frequency spectra to

measure the pairing energy in a bichromatiac lattice.

5.1 Theory of Pairing in a Harmonic Potential

To determine the dimer pairing energy in a harmonic trap, we solve the Schrödinger

equation for a harmonically-trapped two-atom system by using a time-dependent

Green’s function. Then we obtain the stationary Green’s function. The stationary

Green’s function is used in a self-consistent integral equation to find the pair binding

energy.
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The Hamiltonian for two particles interacting via s-wave interaction in an external

potential V prq is

H “ H0 ` Vsprq,

H0 “
p1

2

2m
`

p2
2

2m
` V pr1q ` V pr2q, (5.1)

where r1 and r2 are the position of particles 1 and 2, r “ r1 ´ r2 is the relative

coordinate. The pseudo-potential form of the contact s-wave interaction is [16]

Vsprq “ gδprq
B

Br
rr...s , (5.2)

with g ” 4π~2a
m

and a the s-wave scattering length.

For the case of harmonic confinement, H0 can be written as

H0 “
p2

2µ
`

1

2
µ
ÿ

i“x,y,z

ω2
i r

2
i `

P2

2M
`

1

2
M

ÿ

i“x,y,z

ω2
iR

2
i , (5.3)

where r “ r1 ´ r2 is the relative coordinate and R “ r1`r2
2

is the CM coordinate,

µ “ m
2

is the reduced mass and M “ 2m is the total mass. For a simple harmonic

oscillator external potential, the CM part and the relative motion part are separable.

Since rf-excitation does not change the CM motion, when considering the pair binding

problem, one can ignore the CM motion and only deal with the relative part of the

Hamiltonian. Thus, H0 can be reduced to just the relative motion part,

H0 “
p2

2µ
`

1

2
µ
ÿ

i“x,y,z

ω2
i r

2
i . (5.4)

The total Hamiltonian for the relative motion of the two-atom system inside a har-

monic confinement with s-wave interaction is

Hr “ H0 ` Vsprq. (5.5)
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We use a Green’s function method to solve the Schrödinger equation for the

bound state pairing energy. The time-dependent Schrödinger equation is

„

H0 ´ i~
B

Bt



ψpr, tq “ ´Vsprqψpr, tq. (5.6)

To solve this, we use a time dependent Green’s function

„

H0 ´ i~
B

Bt



Gpr, r1, t´ t1q “ δpt´ t1qδpr´ r1q. (5.7)

Then the solution to eq. 5.6 is

ψpr, tq “ ψp0qpr, tq ´

ż 8

´8

dt1
ż

d3r1Gpr, r1, t´ t1qVspr
1
qψpr1, t1q (5.8)

Where ψp0qpr, tq is the homogeneous solution, i.e., rH0 ´ i~ B
Bt
sψp0qpr, tq “ 0. The

time dependent Green’s function for a three dimensional harmonic trap, with trap

frequencies ωi“x,y,z, is [82]

Gpr, r1, t´ t1q “
i

~
θpt´ t1q

„

´ µ

2πi~

¯3 ωxωyωz
sin θx sin θy sin θz


1
2

¨e
iµωx

~ sin θx

”

cos θx
x2`x12

2
´xx1

ı

¨e
iµωy

~ sin θy
rcos θy

y2`y12

2
´yy1s

¨e
iµωz

~ sin θz
rcos θz

z2`z12

2
´zz1s, (5.9)

where θi ” ωipt´ t
1q.

For H0, which has no explicit time dependence, the time-evolution of a state ψ

follows

ψpr, tq “ e´
iEt
~ ψEprq (5.10)

H0ψEprq “ EψEprq. (5.11)
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For a bound state, there is no input and ψ
p0q
E “ 0, then eq. 5.8 becomes

e´
i
~EtψEprq “ ´

ż 8

´8

dt1
ż

d3r1Gpr, r1, t, t1qVspr
1
qe´

i
~Et

1

ψEpr
1
q. (5.12)

This can be expressed as

ψEprq “ ´

ż

d3r1GEpr, r
1
qVspr

1
qψEpr

1
q, (5.13)

where the stationary Green’s function GEpr, r
1q is defined as

GEpr, r
1
q ”

ż 8

0

dτe
i
~EτGpr, r1, τq. (5.14)

Notice the integtal τ “ t´t1 starts from zero instead of ´8 due to causality (Θpt´t1q

in eq. 5.9).

Hitting both sides of eq. 5.13 with B

Br
rr...s|rÑ0, and inserting the form of the

pseudo-potential in eq. 5.2 one obtains

B

Br
rrψEprqs |rÑ0“ ´

4π~2a

m

B

Br
rrGEpr, 0qs|rÑ0

B

Br1
rr1ψEpr

1
qs |r1Ñ0 . (5.15)

The factors B

Br
rrψEprqs are identical for r and r1. Thus, the bound state energies E

satisfy

1 “ ´
4π~2a

m

B

Br
rrGEpr, 0qs|rÑ0. (5.16)

The operator B

Br
r removes the 1{r divergence in GEpr, 0q so that the right hand

side of eq. 5.16 does not diverge. To solve eq. 5.16, we remove the 1
r

divergence in

GEpr, 0q. Let G0prq be the part of GEpr, 0q that is 91
r
, i.e. B

Br
rrG0prqs |rÑ0 “ 0.

Subtracting G0prq from GEpr, 0q

1 “ ´
4π~2a

m

B

Br
rrpGEpr, 0q ´G0prq qs|rÑ0, (5.17)
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is effectively adding a term that is zero. Now GEpr, 0q ´ G0prq is regular at r “ 0,

i.e. r B
Br
rGEbpr, 0q ´G0prqs |rÑ0 “ 0. Then one obtains

1 “ ´
4π~2a

m
rGEbpr, 0q ´G0prqs|rÑ0. (5.18)

Once G0prq is found, eq. 5.18 can be used to self consistently solve for energy E.

From eq. 5.9 and eq. 5.14, by taking r1 Ñ 0 and letting u “ iωzτ yeilds

GEpr, 0q “
m

4π~2

1

lz

ż 8

0

due´εbu
?

4π

ź

j

p
2βju

1´ e´2βju
q
1{2e´cothpβjuqpxj{2ljq

2

. (5.19)

Here li is the harmonic oscillator length scale, l2i “
~

mωi
, and the dimensionless ratio of

trap frequencies is βi “
ωi
ωz

, where i “ x, y, z. Define binding energy Eb “ ε~ωz ą 0,

assumed to be positive, relative to the ground state energy E0. The ground state

energy of a harmonic oscillator in three directions is E0 “
~ωx

2
`

~ωy
2
` ~ωz

2
. The

eigenenergy E of a stable paired state below the ground state is E “ E0 ´ Eb.

In eq. 5.19, for large Eb where εb " 1, only terms with small u can survive. So,

we can approximately write cothpuq Ñ 1
u
, 2βi

1´e´2uβi
Ñ 1

u
,

GEprq “
1

4π~ωz
1

l3z

ż 8

0

du
?

4πu3
e
´εbu´

r2

4ul2z

“
m

4π~2r
e´r
?
εb{l2z . (5.20)

In order to obtain the form of G0prq, we take the limit of εb Ñ 0 and r Ñ 0 in

eq. 5.20,

G0prq “
m

4π~2lz

ż 8

0

du
?

4πu3
“

m

4π~2r
. (5.21)

We can then use in eq. 5.19 and eq. 5.21 in eq. 5.18 to get a self-consistent integral

equation,

lz
a
“

ż 8

0

du
?

4πu3

«

1´
ź

j

ˆ

2βju

1´ e´2βju

˙1{2

e´εbu

ff

. (5.22)

95



This equation can be used to find the bound state pairing energy Eb “ εb~ωz.

We can test the large Eb limit of eq. 5.18. Inserting eq. 5.20 for GEprq and eq. 5.21

for G0prq into eq. 5.18, one arrives at the following expression,

1 “ ´
4π~2a

m

” m

4π~2r
e´r
?
εb{l2z ´

m

4π~2r

ı

|rÑ0

“ a

c

εb
l2z
. (5.23)

For large binding energy, using l2z “
~

mωz
we have

Eb “ εb~wz “
~2

ma2
. (5.24)

The binding energy corresponds to that of a tight dimer a ! lz, independent of the

trap parameters.

By letting t “ 2u in eq. 5.22 and for cylindrical symmetry ωx “ ωy “ ωK,

βK ”
ωK
ωz
“ 1

N
, where N P integers and N ě 1, one can make use of a trick [93] to

integrate eq. 5.22 exactly.

N´1
ÿ

n“0

´

e´
1
N
t
¯n

“
1´ e´t

1´ e´
1
N
t
, (5.25)

and there exists a closed form for the following integral when x ą 0

ż 8

0

dt

"

e´xt

p1´ e´tq3{2
´

1

t3{2

*

“
´2
?
π Γpxq

Γpx´ 1
2
q
, x ą 0. (5.26)
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Thus the integral on the right hand side of eq. 5.22 becomes

ż 8

0

du
?

4πu3

#

1´

ˆ

2u

1´ e´2u

˙
1
2 2βKu

1´ e´2βKu
e´εbu

+

“ ´
1
?

2π

1

N

N´1
ÿ

n“0

ż 8

0

dt

#

e´p
εb
2
` n
N qt

p1´ e´tq3{2
´

1

t3{2

+

“

?
2

N

N´1
ÿ

0

Γp εb
2
` n

N
q

Γp εb
2
´ 1

2
` n

N
q

(5.27)

The analytical expression for determining the pairing energy is then

lz
a
“

?
2

N

N´1
ÿ

0

Γp εb
2
` n

N
q

Γp εb
2
´ 1

2
` n

N
q
. (5.28)

Recall the definition of binding energy Eb ” εb~ωz, assuming Eb ą 0. We have

E “ E0 ´ Eb, where E0 “
~ωx

2
`

~ωy
2
` ~ωz

2
is the ground state energy of harmonic

oscillators in three directions. We plot Eb in units of ~ωz for various trap geometries

using the above equation. Plotted in Fig 5.1 are results for a spherically symmetric

trap(wK{wz “ 1), cylindrically symmetric trap(wK{wz “ 1{5), and the 2D gas limit

(wK{wz “ 1{1000) where the radial confinement almost does not exist. For repulsive

interaction a ą 0, the energy levels are shifted upward while for attractive interaction

a ă 0, the energy levels are shifted downwards. Apart from the usual bound state

which has E ă E0 corresponding to states that has energy lower than the ground

harmonic oscillator state, there are also many other bound states at E ą E0 coming

from the radial confinement. The red dashed lines correspond to radial harmonic

oscillator states of equally spaced 2~ωK in Fig 5.1(a) and (b). In Fig 5.1(c) the red

dashed lines correspond to axial harmonic oscillator states that are equally spaced by

2~ωz. For the noninteracting limit where aÑ 0, one retrieves the harmonic oscillator

solutions. It is interesting to examine the 2D limiting case, in which the solutions

show spikes around every 2~wz suggesting some kind of resonance. The unexpected
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Figure 5.1: Plot pairing energies Eb “ E0 ´ E referenced to two particle ground
harmonic oscillator states E0 in 3D. The relative motion for two atoms interacting
via s-wave pseudopotential and confined in a cylindrically symmetric harmonic trap
with (a)wK{wz “ 1, (b) wK{wz “ 1{5 and (c) wK{wz “ 1{1000 respectively. The
energies in units of ~ωz are plotted as a function of the harmonic oscillator length

scale lz “
b

~
mwz

over the s-wave scattering length a. The red dashed lines correspond

to radial states of equally spaced 2~ωK in (a) and (b). In (c) the red dashed lines
correspond to every 2~ωz.

quasibound states, which appear at positive energies, are extremely broad in energy

and therefore have never been observed experimentally [94, 95].

5.2 Theory of Pairing in a Double Well Potential

As described in the last section, for a simple harmonic oscillator external potential,

the CM part and the relative motion part are separable. Since rf-excitation does not

change the CM motion, when considering the pair binding problem, one can ignore

the CM motion and only deal with the relative part of the Hamiltonian. However
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for the case of atoms are in an optical lattice, the CM and relative motion are not

decoupled.

Consider first a one dimensional lattice V pzq “ V cos2pkzq, for two atoms at

positions z1 and z2. With Z “
`

z1`z2
2

˘

for the CM and z “ z1 ´ z2 for the relative

position,

V pz1, z2q “ V cos2
´

Z `
z

2

¯

` V cos2
´

Z ´
z

2

¯

“ V pz, Zq. (5.29)

The form of the potential implies that the CM and relative motion are in general

coupled. The Hamiltonian, with the interaction term is

H “
p2

2µ
`

P2
x

2M
`

P2
y

2M
`

P2
z

2M
` V pz, Zq ` gδprq

B

Br
rr...s (5.30)

One can see that only the x and y CM momenta are separable and can therefore

be factored out. Rewriting the Hamiltonian into perturbed and unperturbed parts

yields

H “ H0pr, Zq ` gδprq
B

Br
rr...s

H0pr, Zq “
p2

2µ
`

P2
z

2M
` V pz, Zq

“
p2
K

2µ
`

p1,z

2m
` V pz1q `

p2,z

2m
` V pz2q, (5.31)

where pK is the relative momentum in the transverse x, y direction. p1,z and p2,z

are single particle momenta.

pH0pr, Zq ´ EqΨ
p0q
E pr, Zq “ 0 (5.32)

pH0pr, Zq ´ EqΨEpr, Zq “ ´gδprq
B

Br
rrΨEpr, Zqs (5.33)

By definition, the solution of the following equation is the Green’s function,

pH0pr, Zq ´ EqGEpr, Z, r
1, Z 1q “ ´δpr´ r1qδpZ ´ Z 1q. (5.34)
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Then,

ΨEpr, Zq “ Ψ
p0q
E pr, Zq

` g

ż

dZ 1
ż

d3r1GEpr, Z, r
1, Z 1qδpr1q

B

Br1
rr1ΨEpr

1, Z 1qsr1Ñ0 (5.35)

For a bound state Ψ
p0q
E has to vanish. Applying 1

g
B

Br
rr...s |rÑ0 on both sides and

defining UEpr, Zq ” rΨEpr, Zq, then

1

g
U 1Ep0, Zq “

ż

dZ 1
B

Br
rrGEppr, Z, 0, Z

1
qs |rÑ0 U 1Ep0, Z 1q. (5.36)

Unlike eq. 5.15, the U 1Ep0, Z 1q on the right hand side is inside the integral of Z 1, and

does not simply cancel out as in the harmonic trap case. After integrating over Z 1,

the above equation now only depends on Z, which is center of mass position along

the z-axis. We define U 1Ep0, Zq ” fEpZq, then

1

g
fEpZq “

ż 8

´8

dZ 1KEpZ,Z 1qfEpZ 1q, (5.37)

where the kernel is defined as

KEpZ,Z 1q ”
B

Br
rrGEppr, Z, 0, Z

1
qs |rÑ0 . (5.38)

Since V pz, Zq is periodic in Z, the CM quasi-momentum Q “ q1`q2 is conserved,

and fEpZq has the form of a Bloch function similar to eq. 2.19, which is

fEpZq “
ÿ

G

BGpQq
eipG`QqZ
?
Nd

, (5.39)

where d is the lattice spacing and N is the number of sites. We use eq. 5.39 in

eq. 5.37 and apply
ş

dZe´ipG`QqZ on both sides. Since the basis is orthomornal and
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complete, one obtains

d

a
BGpQq “

4π~2d

m

ÿ

G1

ż

dZe´ipG`QqZ
ż

dZ 1KEpZ,Z 1qBG1pQ
1
qeipG

1`Q1qZ1

“
ÿ

G1

4π~2d

m
xG`Q|KE|G1 `Q1yBG1pQ

1
q. (5.40)

Solving the above matrix equation, one can obtain d{a, the lattice spacing over the

s-wave scattering length, as a function of the energy E.

The trick we use regularize the kernel is to subtract two Green’s functions to

remove the singularity at r Ñ 0, similar to the harmonic oscillator case. We subtract

the Green’s function for zero lattice depth s1 Ñ 0 in eq. 5.38,

Ks2E2pZ,Z
1
q “

`

Gs2
E2pZ,Z

1
q ´Gs1Ñ0

E1 pZ,Z 1q
˘

`Ks1Ñ0
E1 pZ,Z 1q, (5.41)

where pGs2
E2pZ,Z

1q ´Gs1Ñ0
E1 pZ,Z 1qq is now regular at r Ñ 0. s1 and s2 denotes the

lattice depth in units of ER, and in general can be any value. For our convenience,

we will take s1 Ñ 0, which recovers the free particle case.

Let’s first try to compute the second part, the free particle kernel Ks1Ñ0
E1 pZ,Z 1q

as defined in eq. 5.38, by computing first the free particle’s Green’s function.

ˆ

´
~2

2µ

B2

B2r2
´

~2

2M

B2

BZ2
´ E1

˙

G0
E1pr´ r1, Z ´ Z 1q “

´δpr´ r1qδpZ ´ Z 1q. (5.42)

The superscript zero in G0
E1 denotes a lattice depth of zero. The Fourier transform

of the delta function is

δpr´ r1qδpZ ´ Z 1q “

ż

d3k

p2πq3

ż

dq

2π
eikpr´r

1q`iqpZ´Z1q. (5.43)

The free particle’s Green’s function G0
E1 is thus

G0
E1pr´ r1, Z ´ Z 1q “

ż

d3k

p2πq3

ż

dq

2π

eikpr´r
1q`iqpZ´Z1q

pE1 ` iεq ´
~2k2

2µ
´

~2q2
2M

, (5.44)
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where ε Ñ 0`. Requiring the binding energy Eb ą 0 for a bound state such that

E1 “
~2q2
2M

´ Eb, yields

G0
E1pr´ r1, Z ´ Z 1q “

´
m

4π~2

1

r

ż 8

´8

dq

2π
eiqpZ´Z

1q Θ

„

q2

4
´
mE1

~2



e´
b

q2

4
´
mE1
~2 pr´r1q (5.45)

The free particle kernel K0
E1, using definition in eq. 5.38 is then

K0
E1pZ,Z

1
q “

m

4π~2

ż 8

´8

dq

2π
eiqpZ´Z

1q Θ

„

q2

4
´
mE1

~2



c

q2

4
´
mE1

~2
. (5.46)

Using eq. 5.46 in eq. 5.37, we find the binding energies for a zero lattice depth.

The eigenfunction of a free particle having center of mass momentum P is just a

plane wave f 0
EpZq “

eiPZ?
2π

. Using this in eq. 5.37, with eq. 5.46, then we find

EpP q “
~2P 2

4m
´

~2

ma2
. (5.47)

From above expression, we see that the total energy of the dimer is the kinetic energy

of the center of mass minus the dimer binding energy in free space, as it should be.

The binding energy Eb “
~2
ma2

ą 0 is independent of P .

In order to numerically calculate the binding inside the lattice, we need to rewrite

the integral in eq. 5.46 as a discrete sum,
ş

Nd
2π
dq “

ř

G1,q1
with q Ñ G1 ` q1,

K0
E1pZ,Z

1
q “

m

4π~2

ÿ

G1,q1

eipG1`q1qpZ´Z1q

Nd

d

~2

4m

pG1 ` q1q
2

ER
´
E1

ER

c

mER
~2

, (5.48)

where the lattice recoil energy ER “
~2
2m

`

π
d

˘2
and d “ λ

2 sinp θ2q
is the lattice spacing.

Rewriting eq. 5.48 in normalized units, one obtains

K0
ĂE1
pZ,Z 1q “

m

4π~2

1

d

π
?

2

ÿ

ĂG1, rq1

eipG1`q1qpZ´Z1q

Nd

g

f

f

e

´

ĂG1 ` rq1

¯2

2
´ĂE1 , (5.49)
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where ĂE1 “
E1

ER
, ĂG1 ”

G1

k
and rq1 “

q1
k

. With eq. 5.49, the matrix element of the free

particle kernel xG`Q|KS1Ñ0
E1 pZ,Z 1q|G1 `Q1y in eq. 5.40 is,

xG`Q|K0
ĂE1
pZ,Z 1q|G1 `Q1y

“

ż Nd

0

dZ
?
Nd

e´ipG`QqZ
ż Nd

0

dZ 1
?
Nd

eipG
1`Q1qZ1K0

ĂE1
pZ,Z 1q

“
m

4π~2

1

d

π
?

2
δQ,q1δQ1,q1δG,G1δG1,G1

g

f

f

e

´

ĂG1 ` rq1

¯2

2
´ĂE1

“
m

4π~2

1

d

π
?

2
δG,G1δQ,Q1

g

f

f

e

´

rG` rQ
¯2

2
´ĂE1 (5.50)

The delta functions are obtained using the same trick as in eq. 2.23.

For the discrete sum form of Green’s function inside a lattice, we make use of the

completeness relation of the single atom Bloch functions,

ÿ

α,q

Ψα
q pzqΨ

˚α
q pz

1
q “ δpz ´ z1q. (5.51)

Starting from the definition of the Green’s function in eq. 5.34,

pH0prK, z1, z2q ´ EqGEprK, r
1
K; z1, z

1
1; z2, z

1
2q “

´δprK ´ r1Kqδpz1 ´ z
1
1qδpz2 ´ z

1
2q, (5.52)

where rK is the relative x and y coordinate, and z1, z2 specifies the z coordinate of

each particle. Thus

GEprK, r
1
K; z1, z

1
1; z2, z

1
2q “

ÿ

α1,q1,α2,q2

ż 8

0

d2kK
p2πq2

eikKprK´r
1
K
q

Ψα1
q1
pz1qΨ

˚α1
q1
pz11qΨ

α2
q2
pz2qΨ

˚α2
q2
pz12q

pE ` iεq ´ ~2kK2

m
´ εα1pq1q ´ εα2pq2q

. (5.53)

The definition of the z direction center of mass is Z “ z1`z2
2

and relative coordinate

is z “ z1´z2
2

, so that z1 “ Z ` z
2
, z2 “ Z ´ z

2
. By taking r, r1 Ñ 0, z1 “ z2 “ Z
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and z11 “ z12 “ Z 1. The discrete form of GEpr Ñ 0, Z, r1 Ñ 0, Z 1q ” GEpZ,Z
1q in the

Bloch state basis is then

GEpZ,Z
1
q “

ÿ

α1,q1,α2,q2

ż 8

0

d2kK
p2πq2

Ψα1
q1
pZqΨ˚α1

q1
pZ 1qΨα2

q2
pZqΨ˚α2

q2
pZ 1q

pE ` iεq ´ ~2kK2

m
´ εα1pq1q ´ εα2pq2q

. (5.54)

In eq. 5.54, the integral over kK yields a logarithm. In eq. 5.41 the upper limit

kK Ñ 8 in pGs2
E2pZ,Z

1q ´Gs1Ñ0
E1 pZ,Z 1qq vanishes, and the lower limit yields a prin-

cipal part for εÑ 0`. After normalizing all energies to ER, i.e. rE “ E{ER, the first

terms in eq. 5.41 can be written as,

G
rEpZ,Z

1
q ´G0

ĂE1
pZ,Z 1q “

m

4π~2

ÿ

α1,q1,α2,q2

!

Re
´

ln
”

rεα1pq1q ` rεα2pq2q ´ rE
ı¯

Ψα1
q1
pZqΨ˚α1

q1
pZ 1qΨα2

q2
pZqΨ˚α2

q2
pZ 1q

´Re
´

ln
”

rε0α1pq1q `
rε0α2pq2q ´ĂE1

ı¯

Ψ0
α1
q1
pZqΨ˚

0
α1

q1
pZ 1qΨ0

α2
q2
pZqΨ˚

0
α2

q2
pZ 1q

)

, (5.55)

where the zeros denote the zero lattice depth solutions.

Substituting Ψα
q pZq “

ř

GC
α
G
eipG`qqZ?

Nd
, the matrix element in eq. 5.40 is

xG`Q|G
rEpZ,Z

1
q ´G0

ĂE1
pZ,Z 1q|G1 `Q1y “

m

4π~2

1

Nd

ÿ

α1,q1,α2,q2

!

Re
´

ln
”

rεα1pq1q ` rεα2pq2q ´ rE
ı¯

ÿ

G1,G11,G2,G12

Cα1
G1
pq1qC

α1˚

G11
pq1qC

α2
G2
pq2qC

α2˚

G12
pq2q

ż Nd

0

dZ
1

Nd
eirG1`q1`G2`q2´G´QsZ

ż Nd

0

dZ 1
1

Nd
eir´G

1
1´q1´G

1
2´q2`G

1`Q1sZ1

´Re
´

ln
”

rε0α1pq1q `
rε0α2pq2q ´ĂE1

ı¯

......
)

, (5.56)

with the zero lattice depth part having the exact same form as the first part with zero

lattice solutions C0α
G and rε0α. Using the same trick as in eq. 2.23, the integrals over
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Z and Z 1 in eq. 5.56 give δQ,q1`q2 , δQ1,q1`q2 , δG,G1`G2 , and δG1,G11`G12 . Then eq. 5.56

becomes

xG`Q|G
rEpZ,Z

1
q ´G0

ĂE1
pZ,Z 1q|G1 `Q1y “

m

4π~2Nd

ÿ

q1

ÿ

α1,α2

!

Re
´

ln
”

rεα1pq1q ` rεα2pQ´ q1q ´ rE
ı¯

ÿ

G1,G11

Cα1
G1
pq1qC

α1˚

G11
pq1qC

α2
G´G1

pQ´ q1qC
α2˚

G1´G11
pQ´ q1q

´Re
´

ln
”

rε0α1pq1q `
rε0α2pQ´ q1q ´ĂE1

ı¯

ÿ

G1,G11

C0α1

G1
pq1qC

0α1˚

G11
pq1qC

0α2

G´G1
pQ´ q1qC

0α2˚

G1´G11
pQ´ q1q

)

. (5.57)

For higher excited bands, rεα1pq1q »
rε0α1pq1q, and the log terms becomes identical.

Then, the sums reduce to Kronecher deltas,

ÿ

α1

Cα1
G1
pq1qC

α1˚

G11
pq1q “ δG1,G11

,

ÿ

α2

Cα2
G´G1

pq1qC
α2˚

G1´G11
pq1q “ δG´G1,G1´G11

, (5.58)

and the quantity in curly brackets in eq. 5.57 goes to zero. Hence, the sum is

convergent.

The zero lattice depth term can be simplified. Since the zero lattice depth solution

is just parabolically dispersive like a free particle, we know all the C0α
G and ε0αpqq,
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i.e.,

α “ 1, C0α“1
G1

“ δG1,0 ;

ε0α“1pq1q “
~2

2m
q2

1

α “ 2, C0α“2
G1
pq1q “ δG1,´G0Θrq1s ` δG1,G0Θr´q1s ;

ε0α“2pq1q “
~2

2m
pG0 ´ q1q

2Θrq1s `
~2

2m
pG0 ` q1q

2Θr´q1s

α “ 3, C0α“3
G1
pq1q “ δG1,G0Θrq1s ` δG1,´G0Θr´q1s ;

ε0α“3pq1q “
~2

2m
pG0 ` q1q

2Θrq1s `
~2

2m
pG0 ´ q1q

2Θr´q1s, (5.59)

similarly for all the higher bands α “ 4, 5..... These relations require G1 “ G and

G11 “ G1 for each α. Therefore, we can write

rε0α1pq1q “ pĂG1 ` rq1q
2

rε0α2pQ´ q1q “ pĂG2 ` rQ´ rq1q
2
“ p rG´ ĂG1 ` rQ´ rq1q

2, (5.60)

where in eq. 5.56 we have G2 “ G ´ G1 “ G12. The analytic expression of the zero

lattice Green’s function sum in the second half of eq. 5.56 then can be written as

xG`Q|G0
ĂE1
pZ,Z 1q|G1 `Q1y “

m

4π~2

1

Nd

ÿ

q1,G1

ln

„

´

ĂG1 ` rq1

¯2

`

´

rG` rQ´ ĂG1 ´ rq1

¯2

´ĂE1



, (5.61)

where rq1 “
q1
k
“ 2m1

N
; ´N

2
ď m1 ď

N
2
´ 1 with N P even, and ĂG1 “

G1

k
“ nG0

k
“

0, ˘2, ˘4... since G0 “
2π
d

and k “ π
d
.

Note that for a 4M ` 1 band model where 1 ď G1, G2 ď 4M ` 1, due to the

symmetry of the Bloch bands, we can shift GÑ G´p2M ` 1q, G1 Ñ G1´p2M ` 1q

and G2 Ñ G2´p2M `1q to symmetrize the matrix in G,G1. Since G “ G1`G2, the

range of G1 in the sum has to be refined in order not to exceed the matrix dimension.

106



Therefore G1 ď minrG`2M, 4M`1s sets the upper limit, while G1 ě maxr1, G´2M s

sets the lower limit of G1. Rewriting eq. 5.57 after shifting the indices as described

above, one obtains

xG`Q|G0
ĂE1
pZ,Z 1q|G1 `Q1y “

m

4π~2

1

Nd

N
2
´1
ÿ

m1“´
N
2

minrG`2M,4M`1s
ÿ

G1“maxr1,G´2Ms

ln

«

„

2

ˆ

G1 ´ p2M ` 1q `
2m1

N

˙2

`

„

2pG´G1q ` rQ´
2m1

N

2

´ĂE1

ff

. (5.62)

We shift q1 Ñ q1 `
Q
2

, such that the terms are identical for q1 Ñ ´q1, in order to

enhance the computational speed by a factor of two when summing over q1. With

eq. 5.50, eq. 5.57, eq. 5.62, the matrix equation eq. 5.40 now becomes

d

a
BGpQq “

ÿ

G1

MGG1BG1pQq (5.63)

MGG1 “
ÿ

G1

#

1

N

ÿ

q1

ÿ

α1,α2

Re

ˆ

ln

„

rεα1

ˆ

q1 `
Q

2

˙

` rεα2

ˆ

Q

2
´ q1

˙

´ rE

˙

ÿ

G1

ÿ

G11

Cα1
G1

ˆ

q1 `
Q

2

˙

Cα1˚

G11

ˆ

q1 `
Q

2

˙

Cα2
G´G1

ˆ

Q

2
´ q1

˙

Cα2˚

G1´G11

ˆ

Q

2
´ q1

˙

´
1

N

N
2
´1
ÿ

m1“´
N
2

ÿ

G1

ln

ˆ„

2pG1 ´ p2M ` 1qq `
2m1

N

2

`

„

2pG´G1q ` rQ´
2m1

N

2

´ĂE1

˙

`
π
?

2

g

f

f

e

´

rG` rQ
¯2

2
´ĂE1

+

. (5.64)

Notice the range in the summation
ř

G1
,
ř

G11
are defined so that maxr1, G1´2M s ď

G1 ď minrG1 ` 2M, 4M ` 1s and maxr1, G11 ´ 2M s ď G11 ď minrG11 ` 2M, 4M ` 1s.

It is convenient to choose ĂE1 “
p rG` rQq

2

2
so that the free particle kernel part

disappears. Diagonalizing the above matrix equation gives d{a as a function of rE.
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With above formalism, eq. 5.64, we are able to reproduce the prior result for two

atom pairing in a one dimensional periodic potential by G. Orso et al [84].

We show in Fig 5.2 the pair energies calculated for a N “ 40 site lattice using

a 9-band model. The pair energies are calculated for CM quasi-momentum Q “ 0

using eq. 5.64. In general, for a 9-band model, there are 9 solutions for d
a

at every

rE, where a is the s-wave scattering length, which is tunable using a magnetic field.

As of today, we do not fully understand the physical meaning of all of these solu-

tions. However, I’ll try to describe some qualitative or quantitative finding. Inspired

by the solution inside a one dimensional harmonic well with no radial confinement,

which was shown in Fig 5.1(c), we label the smallest d{a solution for a given energy

as red, second to smallest solution as blue, etc. The pair energies are referenced to

E0 “ 2rε1p rQ{2q, corresponding to two atoms of q1 “ ´q2 “ Q{2 both in the lowest

band. States corresponding to E0 ´ E ą 0 are bound states that lie below the two

particle ground state. States with E0 ´ E ă 0 correspond energies higher than two

particle ground state, but lower than some excited state that is still trapped well

below the lattice depth.

For d
a
Ñ ´8, the pair binding is weak. Thus, the solution asymptotes to two

non-interacting particles inside the lattice. The dashed horizontal lines in Fig 5.2

at pE0 ´ Eq{ER “ 0 corresponds to the reference point for two atom in the ground

band. The dashed horizontal line around pE0 ´ Eq{ER “ ´6.2 roughly corresponds

to the energy of one atom in the ground band while the other is in the first excited

band.

For large d
a
ą 0 all solutions asymptote to tightly bound dimers, where Eb “

~2
ma2

,

i.e. E0´E
ER

“
Eb
ER
“ 2

π2

`

d
a

˘2
. In this case the red, blue, and yellow curves in Fig 5.2

corresponds to different CM states of a tightly bound dimer in the effective potential

of the lattice, with the red be the lowest CM state, and green the largest. For
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(E
0
-E
)/
E R

d/a

Figure 5.2: Dimer energy E versus scattering length a obtained by solving the
9-band model matrix equation. For a two particle of CM quasi-momentum rQ “ 0 in
a single color lattice of s1 “ 20, the dimer energies are plotted with respect to the
two particle ground state E0 and normalized to ER.

practical purposes, usually the lowest two bands are occupied. Thus, we will only

include the red and blue curves for the following discussions.

In order to compare the results of pairing energy with harmonic confinement in

eq. 5.28 to the pairing energy inside a single color lattice of arbitrary depth s in

eq. 5.64, we relate lz{a in eq. 5.28 to d{a and εb to Eb{ER. For a lattice of depth

sER, i.e.

V pzq “ sER sin2
p
π

d
zq « sER

π2

d2
z2

“
1

2
mω2

zz
2, (5.65)

~ωz{ER “
?

4s´ 2, where the 2 is an approximation for the anharmonic correction.

Recall lz “
b

~
mωz

, therefore d
lz
“ π

b

?
4s´2
2

. With lz
a
” Ipεbq, for the harmonic
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(E
0
-E
)/
E R

Figure 5.3: Comparing the 9-band model matrix equation solution for a single
color lattice of s1 “ 20 (solid), to the one dimensional harmonic trap solution (open
circle). The red, blue and yellow solid lines are the smallest three d

a
correspond to

every E. The red open circles denote the harmonic confinement solution. The blue
open circles denote the harmonic confinement solution shifted down by the energy
difference between ground and first excited band.

oscillator solution,

d

a
“

d

lz
Ipεbq “ π

d

?
4s´ 2

2
Ipεbq

Eb
ER

“ εbp
?

4s´ 2q, (5.66)

We plot in Fig 5.3 the pair energies inside a single color lattice of s1 “ 20 obtained

using eq. 5.64, where the lowest three d
a

solutions for every E are labeled by solid
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d/a

d/a

(E
0
-E
)/
E R

(E
0
-E
)/
E R

(a)

(b)

Figure 5.4: Pair energies in a bichromatic lattice of depth s1 “ 10, s2 “ 20, and
relative phase (a) φ “ 0 and (b) φ “ 2π

35
. The blue solution in (b) is shifted to the

right from the red solution, similar to an avoided crossing in d
a
.

lines. The red open circles denote the pair energies inside a harmonic trap obtained

from eq. 5.28 and eq. 5.66. The blue open circles are obtained by shifting the red open

circles down by the energy difference between the ground and first excited bands.

Notice that unlike the harmonic solutions, which have spikes at large negative d
a
,

the lattice solution has cutoff at sufficiently negative d
a
, likely due to the non-zero
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tunneling rate that breaks the pairs, while the pairs inside harmonic traps are always

bound.

We plot in Fig 5.4 the pair energies computed using eq. 5.36 for a bichromatic

lattice of depth s1 “ 15, s2 “ 20, and relative phase φ “ 0 or φ “ 2π
35

. Recall from

Fig 2.4 and Fig 2.5 that shifting the phase by φ “ 2π
35

causes little change in the lattice

geometry and the band structure, as shown in Fig 2.4(c). It does significantly modify

the ground state wavefunction, shown in Fig 2.5(c). To our surprise, it significantly

alters the pair energies, as shown in Fig 5.5. For φ “ 2π
35

the blue solution is shifted

to the right from the red solution, which resembles an avoided crossing, however not

in energy, but in d
a
.

5.3 Preliminary RF Spectroscopy Results for Pairing in a Bichromatic
Lattice

We probe the pairing energy in a bichromatic lattice using rf spectroscopy, as de-

scribed in Sec 4.2. We start with the lowest two hyperfine states |1y and |2y, then

apply an rf pulse. We assume that we start with a paired |1y-|2y state, and end up

with a paired |1y-|3y state. As discussed in Sec 2.2, a periodic symmetric double well

potential is created when choosing lattice depths s1 “ 10, s2 “ 20 (in units of ER),

and relative phase of φ “ 0 in a bichromatic lattice. Here the lowest two bands are

close to degenerate. Shifting the phase φ by 2π
35

does not change either the lattice po-

tential geometry or the band structure, but modifies the ground state wavefunction

noticeably. The computed pair energies for a bichromatic lattice of depth s1 “ 10,

s2 “ 20, and relative phase of φ “ 0 and φ “ 2π
35

are shown in Fig 5.4.

We start near the magnetic Feshbach resonance, with B “ 834.6 G. For this field,

d{a12 “ ´0.015 is shown as the purple vertical line and d{a13 “ ´4.285 is shown as

the green vertical line. There are at least two possible final |1y-|3y states for relative

phase φ “ 0 in Fig 5.5(a). The two lowest transition frequencies required for the rf
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Figure 5.5: Pair energies in a bichromatic lattice of depth s1 “ 10, s2 “ 20, and
relative phase (a) φ “ 0 and (b) φ “ 2π

35
. The blue solution is shifted to the right

from the red solution, similar to an avoided crossing in d
a
. Positions of crossing points

are: A(-0.015, 1.638), B(-4.285, 0.078), C(-4.285, -0.448), D(-0.015, 2.088), E(-4.285,
0.288)
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transition, as labeled on the graph in units of ER “ 14.9 kHz, are for A Ñ B 23.3

kHz and AÑ C 31.0 kHz. After shifting the phase to φ “ 2π
35

, there is only one final

|1y-|3y state E that is accessible, which corresponding to a transition frequency of

26.9 kHz.

The measured spectrum for the same lattice configuration is presented in Fig 5.6

for relative phase φ “ 0. We find two resonances near 22 kHz and 28 kHz, close to

the predicted values. For φ “ ˘2π
35

, Fig 5.7 and Fig 5.8, we measure only one peak

at 25 kHz, the same for both positive and negative phase shifts. The measured rf

resonance positions agree reasonably well with the computed pair energies.
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Figure 5.6: RF spectrum at 834 G for a bichromatic lattice of depth s1 “ 10,
s2 “ 20, and relative phase φ “ 0.
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Figure 5.7: RF spectrum at 834 G for a bichromatic lattice of depth s1 “ 10,
s2 “ 20, and relative phase φ “ 2π

35
.
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Figure 5.8: RF spectrum at 834 G for a bichromatic lattice of depth s1 “ 10,
s2 “ 20, and relative phase φ “ ´2π

35
.
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6

Conclusion

6.1 Summary of the Dissertation

This dissertation contains mainly of two pieces of work. I describe the first systematic

study of pairing and thermodynamics for a Fermi gas that is continuously tuned

from 2D to quasi-2D in a new trap geometry. I was able to measure both the radio

frequency spectra and radial cloud profiles under identical conditions for each regime.

For the quasi-2D gas, I found that the spectra were inconsistent with 2D-BCS theory.

For the 2D gas, I found that the spectra can be fit by 2D-BCS mean field theory,

consistent with previous work[3, 13]. In contrast to the spectra, the radii for 2D

clouds were measured to be much smaller than those predicted by 2D-BCS mean

field theory, which yields ideal gas density profiles[14]. These results show that

there is no transition between 2D and quasi-2D systems and that beyond mean field

descriptions are required in both regimes.

In the second part of the dissertation, I studied how a double well superlattice

modifies the pairing of two particles interacting via s-wave collisions. I presented

a Green’s function scheme for computing the two particle binding energy in a one
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dimensional optical lattice. The computed results for binding in a bichromatic lattice

are in reasonable agreement with our preliminary rf spectroscopy measurements.

However, more work is needed to fully understand the rich structure of the predicted

pairing energies as a function of the s-wave scattering length.

6.2 Outlook

In the future, we plan to study fermionic atom pairing in lattices with control of dis-

persion. Relativistic dispersion of weakly interacting Fermi gases has been studied

using a honeycomb lattice by Esslinger's group [96], which produces a cold-atom ana-

log of graphene. In this experiment, the quasi-momentum distribution was measured

to probe the Dirac point. A 1.064µm laser was used to produce two co-propagating

standing waves and one orthogonally propagating standing wave, yielding a hon-

eycomb lattice with controllable dispersion, dependent on the relative frequencies

and intensities of the superposed waves. Here, the Dirac points are topologically

protected, and determined by the tunable lattice geometry. However, pairing inter-

actions have not been studied.

Weitz's group demonstrated a cold-gas analog of relativistic Klein tunneling using

a Bose-Eistein condensate of 87Rb in a Fourier-synthesized optical lattice, measuring

nearly 100% barrier penetration in a regime where a non-relativistic gas would have

negligible penetration probability [15]. When the condensate is transferred to an

energy near the Dirac point, the lattice creates a quasi-relativistic dispersion relation

for the gas. In this experiment, the lattice is created by using a four-photon Raman

process, which is specific to the level structure of the trapped species. While this

method is elegant, it is difficult to apply to mixtures of cold atoms or atoms in more

than one hyperfine state, as the detunings are state-dependent.

Our current one-dimensional bichromatic superlattice system greatly extends

these experiments by enabling control of the dispersion relation in multi-component
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superfluid mixtures with tunable interactions. We plan to employ radio-frequency

spectroscopy to measure the evolution of the gap and spatial profile measurements to

probe the thermodynamics in the transition from a quasi-2D to a 3D quasi-relativistic

gas, in the strongly interacting superfluid regime. Here, our bichromatic superlat-

tice will be used to tune the dispersion relation along the z-axis continuously from

quadratic to linear by changing the stable relative phase and amplitude of the super-

posed optical standing wave potentials. The mechanism for controlling the dispersion

is briefly described in the following section.

6.2.1 Linear Dispersion in a Bichromatic Lattice

We show in this section a derivation of how a gas with a linear dispersion relation

near the zone center q “ 0 can be generated in a bichromatic optical lattice. Recall

the one dimensional bichromatic optical lattice potential, composed of an infrared

lattice and a green lattice along the z direction,

V pzq “ V1 cos2
pkzq ` V2 cos2

ˆ

2kz `
φ

2

˙

, (6.1)

with a depth of V1 ” ´s1ER ă 0 for the red-detuned 1064 nm lattice and V2 ”

s2ER ą 0 for blue-detuned 532 nm lattice. (We define s1 and s2, the lattice depth in

units of ER “
~2k2
2m

, to be positive.) For the simplest 3-band model, the Hamiltonian

reduces to the following matrix equation

»

–

pq̃ ´ ĂG0q
2 ´s1

4
s2
4
e´iφ

´s1
4

q̃2 ´s1
4

s2
4
eiφ ´s1

4
pq̃ ` ĂG0q

2

fi

fl

»

—

–

Cα
q̃´ĂG0

Cα
q̃

Cα
q̃`ĂG0

fi

ffi

fl

“ ĂEα

»

—

–

Cα
q̃´ĂG0

Cα
q̃

Cα
q̃`ĂG0

fi

ffi

fl

, (6.2)

where rE “ E
ER

, G0 “ 2k being the reciprocal lattice vector, and ĂG0 “ 2.

When diagonalizing the matrix, we first take the limit s2 Ñ 0, and expand around

the Brillouin zone center where |rq| ! 1, throwing away higher order terms in q̃2. The

solutions |α, rqy of the 3-band model for
`

s1
4

˘2
! 1 are,
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𝑬[𝒒]

𝑬 𝑹

q/k q/k q/k

(a) (b) (c)

Figure 6.1: The band structure for (a) s1 “ 4, s2 “ 0, (b) s1 “ 4, s2 “ 1, φ “ 0,
and (c) s1 “ 4, s2 “ 1, φ “ π respectively, calculated using a 3-band model. A Dirac
point is created by choosing parameters as in (b).

|3, rqy « 1?
2

”

|rq ` ĂG0y ` |rq ´ ĂG0y

ı

Ẽ “ 4` ε

|2, rqy « 1?
2

”

|rq ` ĂG0y ´ |rq ´ ĂG0y

ı

Ẽ “ 4

|1, rqy « |rqy Ẽ “ ´ε ,

where ε “ 1
2

`

s1
4

˘2
ą 0 is always greater than zero.

As shown in Fig 6.1, the second and third excited bands are close to each other

at the Brillouin zone center. So it makes sense to consider including only |2, rqy and

|3, rqy if we want to study how the two bands cross. Notice also that the ground

band only involves |rqy, which is not coupled to |2, rqy or |3, rqy by V2 cos2
`

2kz ` φ
2

˘

.

Whereas |2, rqy and |3, rqy can couple to each other by V2 cos2
`

2kz ` φ
2

˘

. To study

the Dirac point, we need only states |2, rqy and |3, rqy. We use these solutions as an

approximate orthonormal basis to diagonalize the matrix in the presence of non-zero

V2.

To find the analytical expression of the energy-momentum relation at the zone

center, we rewrite the matrix form of the Hamiltonian in eq 6.2 using the new basis,
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where only |2, rqy and |3, rqy are coupled by the V2 lattice. Then,

„

4´ s2
4

cospφq 2G̃0q̃ ` i
s2
4

sinpφq

2G̃0q̃ ´ i
s2
4

sinpφq 4` ε` s2
4

cospφq

 „

C2

C3



“ rE

„

C2

C3



. (6.3)

Using this approximation, the eigenenergies in units of ER “
~2k2
2m

, where k “ 2π
λ sin θ

2

are

rE “ 4`
ε

2
˘

1

2

b

∆̃2 ` p4G̃0q̃q2, (6.4)

where ε “
s21
32

. The energy gap in between the two bands at rq “ 0 is

r∆ “ |ε`
s2

2
eiφ|. (6.5)

Ignoring the constant offset in eq. 6.4, one obtains

rE “ ˘
1

2

b

∆̃2 ` p4G̃0q̃q2, (6.6)

which can be compared with the relativistic energy-momentum relation

E “ ˘
a

pm˚c2q2 ` ppcq2 . (6.7)

Using pc “ ~qc “ 2ĂG0rq ER, one obtains the effective speed of light

ceff “ 2
~k
m
« 8.7 cm{s . (6.8)

The effective mass, since m˚c2 “ ER
r∆
2

, leads to

m˚
“ m∆̃{16 (6.9)

The gap in eq. 6.5 can be closed (r∆ “ 0) by letting φ “ π and s2 “ 2ε “
s21
16

, i.e.

V2 “
V 2
1

16ER
.

The results of direct numerical diagonalization of the 3-by-3 matrix are plotted in

figure 6.1. The energies of each band are represented in units of ER and are plotted
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as a function of the quasi-momentum in the first Brillouin zone for lattice depths V1,

V2 and φ. By choosing proper phase φ “ π and amplitude s2 “
s21
16
“ 1 for s1 “ 4,

one can tune the energy-momentum relation from quadratic to linear around the

Brillouin zone center.

We plan to study pairing interactions by using the CO2 laser confinement to

increase the chemical potential, and to populate the second band. Then tuning the

lattice will be used to obtain the Dirac point.
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Appendix A

Polaron Model for 2D Fermi Gas Density Profile

Starting from the free energy of a spin-balanced two-dimensional Fermi gas, we can

derive the zero temperature density profile inside a harmonic trap using a polaron

model. The free energy consists of first two terms representing the Fermi energies of

the individual species and the two terms denoting the polaron energy arising from

an intermixing of both spins,

f “
1

2
n1εF1 `

1

2
n2εF2 `

1

2
n1Epp1q `

1

2
n2Epp2q. (A.1)

It is worth pointing out that the factor of 1
2

arises from the energy of the ideal two-

dimensional Fermi gas. We assume these Fermi polarons to be weakly interacting,

so that the polaron impurity model can be extended to a 50-50 mixture.

The ideal 2D local Fermi energy of each species, εFi is given by

εFi “
2π~2

m
ni ” αni. (A.2)

Here ni is the density of the atomic species, with i “ 1, 2 for |1y and |2y. The

two-dimensional polaron energy which arises from scattering of |2y off the Fermi sea
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of |1y, is denoted by

Epp2q “ ypq1qεF1, (A.3)

The dimensionless function ypq1q can be approximated by a simple form [86]

ypq1q “
´2

lnp1` 2 q1q
, (A.4)

where q1 ” εF1{Eb denotes the ratio of the local Fermi energy, εF1 of |1y to the

binding energy, Eb of |1y-|2y dimer in a 2D trap.

For a spin-balanced mixture N1 “ N2, one has εF1 “ εF2 and n1 “ n2 “ n{2. The

chemical potentials are obtained by differentiating eq. A.1 with respect to densities,

µi “ Bf{Bni, resulting in

µ1 “ µ2 “ εF1

"

1` ypq1q `
1

2
y
1

pq1q

*

. (A.5)

where the last term y
1

pq1q is defined to be

y
1

pq1q ” dypq1q{d log q1 “
q1 rypq1qs

2

1` 2q1

. (A.6)

The corresponding form for the local central pressure,

p “ n1µ1 ` n2µ2 ´ f, (A.7)

can be expressed as

p “
n

2
εF1

!

1` ypq1q ` y
1

pq1q

)

. (A.8)

The Gibbs-Duhem relation determines the pressure at the trap center. For fixed

temperature, dp “ ndµ. Since dµ “ ´dUtrap, and the pressure vanishes for Utrap Ñ

8, we have

pp0q “ ´

ż 0

8

npρq dUtrap. (A.9)
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In a harmonic trap, dUtrap “ mω2
Kρdρ and Utrap Ñ 8 as ρ Ñ 8, we immediately

obtain for N1 “ N2

pp0q “
mω2

K

2π

ż 8

0

2πρdρnpρq “
mω2

KN1

π
. (A.10)

We define q1 ” q0ñ1, where the interaction strength q0 ”
EF
Eb

with EF ” ~ωK
?
N1

being the Fermi energy of an ideal gas at the harmonic trap center, and ñ1 ” n1{n0,

where n0 is the ideal gas unit of density n0 ”
EF
α

. With eq. A.8 and eq. A.10 the

central density is immediately determined by numerically solving

ñ1p0q “
1

a

1` y rq0ñ1p0qs ` y
1
rq0ñ1p0qs

. (A.11)

After finding ñ1p0q by numerically solving eq. A.11, one can determine µ̃1p0q by

rewriting the chemical potential in eq. A.5 in units of EF , with µ̃1 “ µ̃1p0q´ ρ̃
2. The

density profile is then determined for the given q0 using

µ̃1p0q ´ ρ̃
2
“ ñ1pρ̃q

„

1` ypq0ñ1q `
1

2
y
1

pq0ñ1q



. (A.12)

The density vanishes for ρ ą R. To find R, we consider the limiting case of

ñ1 Ñ 0, Taylor expansion of the right hand side of eq. A.12 approaches ´1{p2q0q.

The cloud radius in units of RTF is then given by

R

RTF

“

c

µ̃p0q `
1

2q0

, (A.13)

where q0 ”
EF
Eb

defines the interaction strength in 2D.

The column density for the spin balanced mixture is calculated by integrating

the 2D spatial profiles obtained from eq. A.12. In a harmonic trap, the predicted

column density n1Dpxq is very well fit by
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n1Dpxq “ n1Dp0q

ˆ

1´
x2

R2

˙γ

Θ rR ´ |x|s , (A.14)

where Θ is a Heaviside function, n1D0 is the peak column density, and n is an expo-

nent, determined from the fit. Normalizing the x-integral of eq. A.14 to the number

of atoms in one spin state yields

R “
N1

n1Dp0q
?
π

Γpγ ` 3{2q

Γpγ ` 1q
, (A.15)

which determines R from the measured atom number and peak column density.

To find the peak column density we use eq. A.14 to fit the data within 70 percent

of the apparent Thomas-Fermi radius. Thus, we avoid fitting the wings of the column

density, which suffers from relatively high noise.
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